期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
双支路注意力特征融合的卷积稀疏编码目标检测
1
作者 杨昶楠 张振荣 +1 位作者 郑嘉利 曲勃源 《计算机工程与设计》 北大核心 2024年第4期1225-1232,共8页
针对现有目标检测模型在实际运用中会受到各种噪声的影响而导致性能退化的问题,提出一种双支路注意力特征融合(double branch attention feature fusion,DBAFF)的方法。基于CenterNet的结构设计,引入卷积稀疏编码(convolutional sparse ... 针对现有目标检测模型在实际运用中会受到各种噪声的影响而导致性能退化的问题,提出一种双支路注意力特征融合(double branch attention feature fusion,DBAFF)的方法。基于CenterNet的结构设计,引入卷积稀疏编码(convolutional sparse coding,CSC)去噪模块。通过双支路互补学习,自适应选择不同模态的有效信息,使融合特征达到最优化,有效解决该类模型的退化问题。实验结果表明,该方法在噪声数据集VOC-Nosiy上mAP50、mAP75、mAP性能分别达到了57.9%、29.8%、24.5%,检测速度FPS达到111帧,综合性能优于原网络和仅添加卷积稀疏编码的去噪网络。 展开更多
关键词 深度学习 目标检测 双支路 卷积稀疏编码 互补学习 自适应 双支路特征融合
在线阅读 下载PDF
基于四通道卷积稀疏编码的图像超分辨率重建方法 被引量:2
2
作者 陈晨 赵建伟 曹飞龙 《计算机应用》 CSCD 北大核心 2018年第6期1777-1783,共7页
针对图像分辨率较低的问题,提出了一种基于四通道卷积稀疏编码的图像超分辨率重建方法。首先,该方法将输入图像依次翻转90°作为四通道的各自输入,通过低通滤波和梯度算子将输入图像分解成高频和低频部分;接着,分别利用卷积稀疏编... 针对图像分辨率较低的问题,提出了一种基于四通道卷积稀疏编码的图像超分辨率重建方法。首先,该方法将输入图像依次翻转90°作为四通道的各自输入,通过低通滤波和梯度算子将输入图像分解成高频和低频部分;接着,分别利用卷积稀疏编码方法和三次插值方法对各通道低分辨率图像的高频部分和低频部分进行重建;最后,对四通道输出图像加权求均值获得重建的高分辨率图像。实验结果表明,所提方法比一些经典的超分辨率重建方法在峰值信噪比(PSNR)、结构相似度(SSIM)和抗噪性上具有更好的重建效果。所提方法不仅克服了重叠补丁破环图像补丁间一致性的缺陷,还提高了重建图像的细节轮廓,加强了重建图像的稳定性。 展开更多
关键词 图像重建 超分辨率 卷积稀疏编码 四通道 稳定性
在线阅读 下载PDF
基于卷积稀疏编码的电容层析成像图像重建 被引量:2
3
作者 张立峰 卢栋臣 《计量学报》 CSCD 北大核心 2023年第7期1075-1079,共5页
针对电容层析成像(ECT)病态性逆问题,提出了一种将卷积稀疏编码模型作为惩罚项嵌入到ECT最小二乘问题的方法,通过预先训练好的滤波器并结合交替方向乘子算法(ADMM)对此模型进行求解,从而完成ECT图像重建。对提出的方法进行了仿真及实验... 针对电容层析成像(ECT)病态性逆问题,提出了一种将卷积稀疏编码模型作为惩罚项嵌入到ECT最小二乘问题的方法,通过预先训练好的滤波器并结合交替方向乘子算法(ADMM)对此模型进行求解,从而完成ECT图像重建。对提出的方法进行了仿真及实验测试,并与LBP、Tikhonov正则化及Landweber迭代算法进行比较。结果表明,提出的方法其重建图像平均相对误差和相关系数分别为0.4389及0.8968,均优于其他3种方法,中心物体及多物体分布的重建质量得到显著提升。 展开更多
关键词 计量学 电容层析成像 图像重建 卷积稀疏编码 交替方向乘子算法 多相流检测
在线阅读 下载PDF
小波域卷积稀疏编码的低剂量CT图像重建 被引量:5
4
作者 刘进 亢艳芹 +2 位作者 胡殿麟 陈阳 康季槐 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第11期1784-1794,共11页
随着CT成像技术的发展,其射线剂量明显降低,然而实现优质成像依然是低剂量CT研究领域中的重点问题.为实现低剂量CT的优质成像,减缓重建图像中伪影及噪声干扰,提出了一种小波域的卷积稀疏编码CT重建算法.该算法是利用预先构建的滤波器集... 随着CT成像技术的发展,其射线剂量明显降低,然而实现优质成像依然是低剂量CT研究领域中的重点问题.为实现低剂量CT的优质成像,减缓重建图像中伪影及噪声干扰,提出了一种小波域的卷积稀疏编码CT重建算法.该算法是利用预先构建的滤波器集,对重建图像中的小波域高频子带进行卷积稀疏表示,并引入到低剂量CT重建中以构造目标函数.通过重建图像更新和小波域卷积稀疏编码两个步骤的交替优化,实现重建目标函数的求解.在Shepp-Logan模拟数据、AAPM模拟数据与UIH真实数据上进行实验,并与全变差、字典学习、梯度正则化的卷积稀疏编码等进行对照分析,实验结果表明,所提算法可获得噪声伪影少、结构细节对比度高的重建图.最后,参数分析实验表明所提算法易实施且具有良好的参数稳健性. 展开更多
关键词 计算机断层成像 低剂量 图像重建 小波变换 卷积稀疏编码
在线阅读 下载PDF
多尺度半耦合卷积稀疏编码的遥感影像超分辨率重建 被引量:7
5
作者 陈楠 张标 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第3期382-391,共10页
传统的卷积稀疏编码超分辨率方法在特征空间转换时仅引入线性投影关系,且在特征图的学习中未能考虑局部细节信息,使重建结果在边缘和细节方面不尽如人意.为此,将卷积稀疏编码理论引入遥感影像的超分辨重建框架中,提出一种多尺度半耦合... 传统的卷积稀疏编码超分辨率方法在特征空间转换时仅引入线性投影关系,且在特征图的学习中未能考虑局部细节信息,使重建结果在边缘和细节方面不尽如人意.为此,将卷积稀疏编码理论引入遥感影像的超分辨重建框架中,提出一种多尺度半耦合卷积稀疏编码的超分辨率重建方法.首先对输入影像进行多尺度分解,提取出平滑分量和多个尺度的纹理分量,并对最终的平滑分量进行双三次插值重建;然后将每个尺度的纹理分量进行半耦合卷积稀疏编码重建,利用非线性卷积算子作为每个尺度下纹理分量的高分辨率特征图与低分辨率特征图之间的投影函数,并在特征图的学习中引入非局部自相似性结构进行约束优化,从而更好地重建出每个尺度下的纹理分量;最后将重建后的平滑分量和每个尺度下的纹理分量进行叠加,获得最终的重建影像.以4种不同传感器的遥感影像作为实验影像,与几种先进的超分辨率重建方法对比的实验结果表明,所提方法获得的重建影像在定量分析指数PSNR和FSIM方面均优于其他方法,表现出更为清晰的边界和细节信息,且具有一定的抗噪性能. 展开更多
关键词 卷积稀疏编码 多尺度策略 半耦合字典 非局部自相似 超分辨率重建
在线阅读 下载PDF
基于多尺度卷积稀疏编码的红外图像快速超分辨率 被引量:5
6
作者 张雯雯 韩裕生 +1 位作者 黄勤超 徐国明 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第10期1935-1942,共8页
针对红外图像在提高分辨率的同时容易存在振铃效应及细节丢失的问题,提出一种多尺度卷积稀疏编码的快速超分辨率方法.首先将输入图像多尺度分解得到平滑分量和细节纹理分量,对最终的平滑分量进行双三次插值放大作为输出图像的平滑分量;... 针对红外图像在提高分辨率的同时容易存在振铃效应及细节丢失的问题,提出一种多尺度卷积稀疏编码的快速超分辨率方法.首先将输入图像多尺度分解得到平滑分量和细节纹理分量,对最终的平滑分量进行双三次插值放大作为输出图像的平滑分量;然后通过叠加每个尺度的高分辨率滤波器及其对应尺度的高分辨率特征映射卷积后求和,得到输出图像的高频纹理结构,其中,每个尺度的高分辨率特征映射是由对应尺度的低分辨率特征映射通过放大和保稀疏的映射函数变换得到,而滤波器利用较少的可分离滤波器线性表示且卷积迭代求解过程优化.对通用性及实验室采集的红外图像的实验结果表明,同改进前的算法相比,文中方法提高了图像的峰值信噪比,不仅在保持良好的一致性基础上实现高分辨率图像的复原,而且有效地抑制了振铃效应;图像边缘纹理明显,也有效地提高了处理速度. 展开更多
关键词 卷积稀疏编码 红外图像 快速超分辨率
在线阅读 下载PDF
结合Shortcut Connections结构的卷积稀疏编码图像去噪算法 被引量:4
7
作者 张膑 张运杰 白明明 《科学技术与工程》 北大核心 2021年第26期11253-11262,共10页
卷积稀疏编码网络模型(convolutional sparse coding network,CSCNet)虽然能够有效解决去噪问题,但是该算法并没有考虑到迭代求解近似编码向量过程中卷积层、反卷积层之间的叠加会改变原始数据分布方式。为解决该问题,借鉴深度学习领域... 卷积稀疏编码网络模型(convolutional sparse coding network,CSCNet)虽然能够有效解决去噪问题,但是该算法并没有考虑到迭代求解近似编码向量过程中卷积层、反卷积层之间的叠加会改变原始数据分布方式。为解决该问题,借鉴深度学习领域常用方法对原始模型进行改进。讨论了在CSCNet模型中加入以及不加入批处理标准化(batch normalization,BN)、非线性激活函数、残差学习(residual learning,RL)对模型图像去噪效果的影响,然后再此基础上分别设计了两个不同的网络模型结构。为使输入数据分布方式不因模型层与层之间传播而改变,模型1是在原始CSCNet网络的每一层加入非线性激活函数以及BN层。CSCNet模型中所训练的卷积核都是同样大小,为增加图像特征的多样性,模型2在模型1基础之上加入了简单残差块结构改变了原始模型参数传播方式,并将其通过Shortcut Connections结构与原始输入联结起来。从实验结果可以看出,在不降低原始模型计算效率的前提下,使用文中设计的模型所得去噪后的结果相比原卷积稀疏编码网络略有提升。 展开更多
关键词 稀疏编码 卷积稀疏编码 批处理标准化 残差学习
在线阅读 下载PDF
基于深度多尺度卷积稀疏编码的图像去噪算法 被引量:2
8
作者 尹海涛 王天由 《计算机科学》 CSCD 北大核心 2023年第4期133-140,共8页
针对图像去噪深度网络缺乏可解释性的问题,利用深度展开思想,提出了一种基于多尺度卷积稀疏编码的深度去噪网络(MSCSC-Net)。首先利用多尺度卷积字典,构建了多尺度卷积稀疏编码模型,能有效地刻画图像中的多尺度结构特征,然后将多尺度卷... 针对图像去噪深度网络缺乏可解释性的问题,利用深度展开思想,提出了一种基于多尺度卷积稀疏编码的深度去噪网络(MSCSC-Net)。首先利用多尺度卷积字典,构建了多尺度卷积稀疏编码模型,能有效地刻画图像中的多尺度结构特征,然后将多尺度卷积稀疏编码模型的传统迭代优化解展开为深度神经网络架构,即MSCSC-Net,其中网络的每层对应优化解的每次迭代。因此,提出的深度网络中参数可以通过优化模型来准确定义,提高了网络的可解释性。此外,为了更加有效地保留原始图像中的结构信息,MSCSC-Net采用了一种改进的残差学习思想,将输入噪声图像与上一层的中间去噪结果进行加权,并作为下一层的输入图像,以进一步提高网络的去噪效果。在公开数据集上的实验结果表明,与现有典型的基于深度学习去噪算法相比,MSCSC-Net具有一定的竞争力。特别地,在CBSD68数据集上,噪声等级为75时,MSCSC-Net的平均PSNR指标和SSIM指标比FFDNet分别提高了0.77%和2.2%。 展开更多
关键词 图像去噪 多尺度卷积稀疏编码 残差学习 深度神经网络 深度展开
在线阅读 下载PDF
基于低秩与卷积稀疏约束的压缩感知光谱成像重构方法
9
作者 郭高 王攀 +2 位作者 李杰 席特立 邵晓鹏 《光子学报》 北大核心 2025年第6期172-187,共16页
针对压缩感知光谱成像快速重建需求,提出了一种基于低秩与卷积稀疏约束的压缩感知光谱成像重建方法,首先将压缩感知光谱采集系统的重构任务,在卷积稀疏编码的框架下分解成为两部分的重构结果叠加,即低频的平滑主体结构部分和高频的纹理... 针对压缩感知光谱成像快速重建需求,提出了一种基于低秩与卷积稀疏约束的压缩感知光谱成像重建方法,首先将压缩感知光谱采集系统的重构任务,在卷积稀疏编码的框架下分解成为两部分的重构结果叠加,即低频的平滑主体结构部分和高频的纹理细节部分。针对高频的纹理细节部分的重构,提出基于卷积稀疏编码框架,对卷积字典对应的稀疏特征图进行ℓ_(2,1)范数约束,保证了对光谱数据中光谱维度的先验约束,从而提高重构数据中光谱维度的准确度。针对低频的平滑主体部分重构,提出使用全局的卷积稀疏编码,由于使用了针对低频部分所训练的卷积字典,因此使用核范数对卷积特征图进行约束。通过整合两部分的重建约束,实现了对压缩感知光谱成像系统的分步重构。通过仿真实验验证了所提方法的重构结果,在空间与光谱维度相较于主流前沿的重建方法均取得了更高的重构精度,其中空间维度上峰值信噪比至少可提升2 dB以上。 展开更多
关键词 压缩感知 光谱成像 卷积稀疏编码 火箭尾焰光谱 最优化求解
在线阅读 下载PDF
基于特征基的GMC卷积稀疏机械故障特征解析方法 被引量:2
10
作者 卢威 韩长坤 +2 位作者 闫晶晶 宋浏阳 王华庆 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第7期239-249,共11页
在机械设备的复杂工况下,监测信号易受多振动源及环境噪声干扰,导致故障特征微弱且呈现强耦合特性,这给设备故障诊断带来极大挑战。因此,提出了一种基于振动特性基的GMC增强卷积稀疏机械故障特征解析方法,实现微弱耦合故障特征解析。首... 在机械设备的复杂工况下,监测信号易受多振动源及环境噪声干扰,导致故障特征微弱且呈现强耦合特性,这给设备故障诊断带来极大挑战。因此,提出了一种基于振动特性基的GMC增强卷积稀疏机械故障特征解析方法,实现微弱耦合故障特征解析。首先,构造了一种自适应单边衰减小波匹配算法以获取最优特征原子,将最优特征原子升维同时匹配故障周期,以得到具有周期特征的振动特征基。其次,提出基于GMC增强的卷积稀疏编码,结合振动特征基优化求解稀疏系数。此外,提出了一种基于平均峭度与谐波能量比的过程参数优化选择方法,克服了优化过程中关键参数难选取的问题。最后,提取包络谱主要特征与理论故障特征频率对比判断故障类型。通过仿真分析和试验台信号验证,并对比分析了基于谱峭度分解和可调变Q因子小波变换GMC稀疏增强等两种传统方法。实验结果表明,相较于上述两种传统方法,本文提出的方法可以有效地分离不同类型的故障特征信号,并实现故障特征的增强。 展开更多
关键词 振动特征基 广义极大-极小凹 卷积稀疏编码 特征解析 故障诊断
在线阅读 下载PDF
基于语音卷积稀疏迁移学习和并行优选的帕金森病分类算法研究 被引量:2
11
作者 张小恒 李勇明 +4 位作者 王品 曾孝平 颜芳 张艳玲 承欧梅 《电子与信息学报》 EI CSCD 北大核心 2019年第7期1641-1649,共9页
基于语音数据分析的帕金森病(PD)诊断存在样本量小、训练与测试数据分布差异明显的问题。为了解决这些问题,需要从降维和样本扩充两个方面同时进行。因此,该文提出结合加噪加权卷积稀疏迁移学习和样本特征并行优选的PD分类算法。该算法... 基于语音数据分析的帕金森病(PD)诊断存在样本量小、训练与测试数据分布差异明显的问题。为了解决这些问题,需要从降维和样本扩充两个方面同时进行。因此,该文提出结合加噪加权卷积稀疏迁移学习和样本特征并行优选的PD分类算法。该算法可从源域的公共语音库中学习有利于表达PD语音特征的有效结构信息,同时完成降维和样本间接扩充。样本特征并行优选考虑到了样本和语音特征间的关系,从而有助于获取高质量的特征。首先,对公共语音库进行特征提取构造公共特征库;然后,以公共特征库对PD目标域的训练数据集及测试数据集进行稀疏编码,这里分别采用传统稀疏编码(SC)与卷积稀疏编码(CSC)两种稀疏编码方法;接着,对编码后的语音样本段和特征数据进行同时优选;最后,采用支撑向量机(SVM)进行分类。实验结果表明,该算法针对受试者的分类准确率最高值达到了95.0%,均值达到了86.0%,较相关被比较算法有较大提高。此外,研究还发现,相较于传统稀疏编码方法,卷积稀疏编码更有利于提取PD语音数据的高层特征;同样,迁移学习也有利于提高该算法性能。 展开更多
关键词 迁移学习 帕金森病 稀疏编码 卷积稀疏编码 语音样本特征并行优选
在线阅读 下载PDF
基于稀疏编码和矩阵分解的视频去雪算法
12
作者 贾爱文 贾振红 《激光杂志》 CAS 北大核心 2023年第7期89-94,共6页
视频中的雪花会降低视频图像的质量,影响计算机对视频中目标自动检测、跟踪和识别等操作。视频中雪花去除是一项具有挑战性的任务,现存的算法除雪方法效果不佳。根据不同的空间特征,将一个视频中的雪花分为近景雪花和远景雪花。首先,利... 视频中的雪花会降低视频图像的质量,影响计算机对视频中目标自动检测、跟踪和识别等操作。视频中雪花去除是一项具有挑战性的任务,现存的算法除雪方法效果不佳。根据不同的空间特征,将一个视频中的雪花分为近景雪花和远景雪花。首先,利用低秩矩阵分解提取视频的背景信息。然后,采用多尺度卷积稀疏编码对远景雪花进行检测。利用马尔可夫随机场对运动物体进行建模,之后使用连通域阈值去除被判断为运动物体的雪花。实验结果表明,提出的算法有效地去除了视频中的近景雪花和远景雪花,同时保留了相关的背景和运动物体的信息。 展开更多
关键词 视频去雪 多尺度卷积稀疏编码 连通域 低秩矩阵分解 马尔科夫随机场
在线阅读 下载PDF
基于无监督学习的编码衍射成像方法研究 被引量:1
13
作者 石保顺 吴一凡 练秋生 《燕山大学学报》 CAS 北大核心 2023年第1期54-63,共10页
编码衍射成像旨在利用衍射强度图样重建原始图像,而现有基于人工设计先验的编码衍射成像算法大都在低信噪比下成像质量低。通过基于深度神经网络学习的深度先验能够解决上述问题,但有监督学习需要大规模样本对,不利于实际应用。针对这... 编码衍射成像旨在利用衍射强度图样重建原始图像,而现有基于人工设计先验的编码衍射成像算法大都在低信噪比下成像质量低。通过基于深度神经网络学习的深度先验能够解决上述问题,但有监督学习需要大规模样本对,不利于实际应用。针对这一问题,本文提出一种基于无监督学习的编码衍射成像方法。该方法结合双数据保真项、卷积稀疏编码模型和深度图像先验模型构建了能够融合互补先验的优化模型,并利用交替优化方法对其进行有效求解。实验结果表明,提出的方法能够在低信噪比下仅通过单幅编码衍射强度图样重建出高质量的图像。 展开更多
关键词 计算成像 衍射成像 无监督学习 深度图像先验 卷积稀疏编码
在线阅读 下载PDF
分组训练卷积字典的图像去噪算法 被引量:4
14
作者 张膑 张运杰 白明明 《科学技术与工程》 北大核心 2021年第6期2379-2386,共8页
卷积稀疏编码(convolutional sparse coding,CSC)这一全局模型因字典的特殊结构而受到广泛关注,其中卷积字典学习算法(slice-based dictionary learning,S-BCSC)是最为有效的CSC模型优化算法。虽然S-BCSC算法非常有效,但算法在应用中对... 卷积稀疏编码(convolutional sparse coding,CSC)这一全局模型因字典的特殊结构而受到广泛关注,其中卷积字典学习算法(slice-based dictionary learning,S-BCSC)是最为有效的CSC模型优化算法。虽然S-BCSC算法非常有效,但算法在应用中对整幅图像只使用一个固定大小的字典,然而这并不利于图像信息的准确描述。为克服这一缺陷,讨论如何根据图像大小确定卷积字典大小,结合稀疏表示字典学习算法,提出分组训练卷积字典的图像去噪算法。新算法首先将过冗余图像块按照平滑、纹理、边缘分为三类;然后为每一类分别确定所要训练的卷积字典大小;最后依据S-BCSC算法完成字典学习以及图像去噪过程。从实验结果可以看出,所提算法在图像质量、清晰度上相比原S-BCSC算法都有所提升。 展开更多
关键词 稀疏表示 稀疏编码 字典学习 卷积字典学习 卷积稀疏编码
在线阅读 下载PDF
基于色彩视觉传达的低分辨率激光图像重建方法
15
作者 吴頔 《激光杂志》 CAS 北大核心 2024年第10期141-146,共6页
低分辨率激光图像重构存在色彩视觉效果不佳,结构相似度指数低等问题,因此,设计基于色彩视觉传达的低分辨率激光图像重建方法。引入色彩视觉传达技术,填充图像色彩。采用ANC滤波将幅度作为置信度,结合双边滤波器和幅度值域核函数,设计... 低分辨率激光图像重构存在色彩视觉效果不佳,结构相似度指数低等问题,因此,设计基于色彩视觉传达的低分辨率激光图像重建方法。引入色彩视觉传达技术,填充图像色彩。采用ANC滤波将幅度作为置信度,结合双边滤波器和幅度值域核函数,设计自适应双边归一化卷积法,滤波处理图像。采用四通道卷积稀疏编码,重建低分辨率激光图像。结果表明,该方法重建图像的色彩视觉传达效果最佳,饱和度为97.2%,亮度、色相、色彩对比度和锐度分别提高7.0%、20°、3.0和0.05 Line Pairs/MM,并且视区平滑性到达0.96,结构相似度指数为0.97,该方法具备了更好的激光图像重建效果。 展开更多
关键词 色彩视觉传达 视觉表达灵敏度差分算法 低分辨率激光图像 四通道卷积稀疏编码 图像重建
在线阅读 下载PDF
多层局部块坐标下降法及其驱动的分类重构网络 被引量:2
16
作者 王金甲 张玉珍 +1 位作者 夏静 王凤嫔 《自动化学报》 EI CSCD 北大核心 2020年第12期2647-2661,共15页
卷积稀疏编码(Convolutional sparse coding,CSC)已广泛应用于信号或图像处理、重构和分类等任务中,基于深度学习思想的多层卷积稀疏编码(Multi-layer convolutional sparse coding,ML-CSC)模型的多层基追踪(Multi-layer basic pursuit,... 卷积稀疏编码(Convolutional sparse coding,CSC)已广泛应用于信号或图像处理、重构和分类等任务中,基于深度学习思想的多层卷积稀疏编码(Multi-layer convolutional sparse coding,ML-CSC)模型的多层基追踪(Multi-layer basic pursuit,ML-BP)问题和多层字典学习问题成为研究热点.但基于傅里叶域的交替方向乘子法(Alternating direction multiplier method,ADMM)求解器和基于图像块(Patch)空间域思想的传统基追踪算法不能容易地扩展到多层情况.在切片(Slice)局部处理思想的基础上,本文提出了一种新的多层基追踪算法:多层局部块坐标下降(Multi-layer local block coordinate descent,ML-LoBCoD)算法.在多层迭代软阈值算法(Multi-layer iterative soft threshold algorithm,ML-ISTA)和对应的迭代展开网络ML-ISTA-Net的启发下,提出了对应的迭代展开网络ML-LoBCoD-Net.ML-LoBCoD-Net实现信号的表征学习功能,输出的最深层卷积稀疏编码用于分类.此外,为了获得更好的信号重构,本文提出了一种新的多层切片卷积重构网络(Multi-layer slice convolutional reconstruction network,ML-SCRN),ML-SCRN实现从信号稀疏编码到信号重构.我们对这两个网络分别进行实验验证.然后将ML-LoBCoD-Net和ML-SCRN进行级联得到ML-LoBCoD-SCRN合并网,同时实现图像的分类和重构.与传统基于全连接层对图像进行重建的方法相比,本文提出的ML-LoBCoD-SCRN合并网所需参数少,收敛速度快,重构精度高.本文将ML-ISTA和多层快速迭代软阈值算法(Multilayer fast iterative soft threshold algorithm,ML-FISTA)构建为ML-ISTA-SCRN和ML-FISTA-SCRN进行对比实验,初步证明了所提出的ML-LoBCoD-SCRN分类重构网在MNIST、CIFAR10和CIFAR100数据集上是有效的,分类准确率、损失函数和信号重构结果都优于ML-ISTA-SCRN和ML-FISTA-SCRN. 展开更多
关键词 多层卷积稀疏编码 多层基追踪 多层局部块坐标下降法 分类 重构
在线阅读 下载PDF
基于深度展开和双流网络的高光谱图像融合
17
作者 刘丛 姚佳浩 《数据采集与处理》 CSCD 北大核心 2023年第6期1406-1421,共16页
针对基于深度学习的高光谱图像融合算法通常堆积多个卷积以学习映射关系、没有充分利用问题的特性以及缺乏可解释性等问题,提出一种结合深度展开与双流网络的深度网络。首先使用卷积稀疏编码建立融合模型,该模型将低分辨率高光谱图像(Lo... 针对基于深度学习的高光谱图像融合算法通常堆积多个卷积以学习映射关系、没有充分利用问题的特性以及缺乏可解释性等问题,提出一种结合深度展开与双流网络的深度网络。首先使用卷积稀疏编码建立融合模型,该模型将低分辨率高光谱图像(Low-resolution hyperspectral images,LR-HSI)和高分辨率多光谱图像(high-resolution multispectral images,HR-MSI)映射到低维子空间中。在融合模型设计中,考虑了LR-HSI和HR-MSI的共有信息以及LR-HSI的独有信息,并将HR-MSI作为辅助信息加入模型中。其次将该融合模型展开为可学习的可解释深度网络。最后,使用双流网络获取更精确的高分辨率高光谱图像(High-resolution hyperspectral images,HR-HSI)。实验表明,该网络在高光谱图像融合中可以获得出色的效果。 展开更多
关键词 高光谱图像融合 卷积稀疏编码 深度展开网络 双流网络 深度学习
在线阅读 下载PDF
基于内-外部互补先验的亚像素分辨率衍射成像算法研究 被引量:1
18
作者 石保顺 吴一凡 练秋生 《燕山大学学报》 CAS 北大核心 2023年第4期347-358,共12页
亚像素分辨率衍射成像旨在利用观测的低分辨率衍射强度图样重建高分辨率图像,它在多个科学与工程领域具有重要应用。现有算法大都存在重建质量低且重建图像丢失了大量细节信息的问题。为解决这些问题,本文融合复图像的内部先验和外部先... 亚像素分辨率衍射成像旨在利用观测的低分辨率衍射强度图样重建高分辨率图像,它在多个科学与工程领域具有重要应用。现有算法大都存在重建质量低且重建图像丢失了大量细节信息的问题。为解决这些问题,本文融合复图像的内部先验和外部先验提出了能够重建高质量图像的亚像素分辨率衍射成像方法。本文利用基于内部先验的三维块匹配滤波框架表示模型与蕴含外部先验的深度展开卷积稀疏编码模型结合复数表示模型提出了融合内-外部互补先验的复数域正则化模型,基于该正则化模型构建了面向亚像素分辨率衍射成像的优化模型,并利用交替优化方法对构建的优化模型进行了有效求解。仿真实验表明,提出的算法能够充分利用复图像内-外部互补先验知识进行亚像素分辨率衍射成像,并且在超分辨率因子为2时重建复图像的平均峰值信噪比较基于全变差的算法提升了1.58 dB。实际无透镜片上显微镜的实验结果表明提出算法较基于全变差的算法能够重建出更多的细节信息。 展开更多
关键词 计算成像 衍射成像 超分辨率相位恢复 深度展开卷积稀疏编码
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部