期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CKAGAN的车辆传动系统轴承数据生成异常检测方法
1
作者 郝乃芃 陈涛 +1 位作者 贾然 胡谦 《机电工程》 北大核心 2025年第8期1512-1520,共9页
针对车辆传动系统轴承的异常样本稀缺,导致异常检测模型难以得到有效训练且准确率不足的问题,提出了一种基于卷积科尔莫戈洛夫-阿诺德生成对抗网络(CKAGAN)的数据生成异常检测方法,即采用卷积科尔莫戈洛夫-阿诺德网络(ConvKAN)作为生成... 针对车辆传动系统轴承的异常样本稀缺,导致异常检测模型难以得到有效训练且准确率不足的问题,提出了一种基于卷积科尔莫戈洛夫-阿诺德生成对抗网络(CKAGAN)的数据生成异常检测方法,即采用卷积科尔莫戈洛夫-阿诺德网络(ConvKAN)作为生成器和判别器的主要结构,以提升生成数据样本的质量和模型收敛速度。首先,使用短时傅里叶变换(STFT)获得了轴承振动信号的时频图样本,利用ConvKAN构建数据生成模型CKAGAN,并将轴承振动信号的不平衡数据集扩充至正常水平;然后,构建了用于异常数据分类的深度卷积神经网络,并将扩充后的数据与原始数据共同输入到模型中进行了训练;最后,采用实际车辆运行过程中采集到的实验数据,开展了轴承振动数据的异常检测实验。研究结果表明:基于CKAGAN的异常检测方法能够有效平衡异常数据集,使模型得到充分的训练并显著提升异常检测的准确率,为提高车辆传动系统轴承异常检测准确率提供了一种有效途径;其中,在实际的车辆传动系统轴承异常检测实验中,以50的异常样本量为例,CKAGAN生成的样本质量高于深度卷积生成对抗网络(DCGAN),生成样本的弗雷歇距离(FID)值分别为31和86;同时,CKAGAN异常检测方法的F1分数相较于未扩充数据集和DCGAN异常检测方法分别提升了27.17%和15.33%。可见CKAGAN方法能有效解决车辆传动系统轴承的异常检测准确率不足的问题。 展开更多
关键词 机械传动 深沟球轴承 卷积科尔莫戈洛夫-阿诺德生成对抗网络 短时傅里叶变换 数据不平衡 样本生成 深度卷积生成对抗网络 弗雷歇距离
在线阅读 下载PDF
基于实车行驶过程的锂电池荷电状态估计
2
作者 秦超朋 蒋宝山 盛步云 《现代制造工程》 北大核心 2025年第10期89-95,共7页
在车辆行驶过程中,荷电状态(State of Charge,SOC)估算高度依赖电流测量,但电流传感器故障会导致数据缺失,进而降低SOC估算精度,为此,亟需一种能够在电流数据异常或缺失情况下仍可准确估算SOC的方法。针对此问题,提出了一种基于卷积神... 在车辆行驶过程中,荷电状态(State of Charge,SOC)估算高度依赖电流测量,但电流传感器故障会导致数据缺失,进而降低SOC估算精度,为此,亟需一种能够在电流数据异常或缺失情况下仍可准确估算SOC的方法。针对此问题,提出了一种基于卷积神经网络(Convolutional Neural Networks,CNN)-长短期记忆(Long Short-Term Memory,LSTM)网络-科尔莫戈洛夫-阿诺德网络(Kolmogorov-Arnold Networks,KAN)的数据驱动方法,该方法不依赖电流数据,可以作为电流传感器失效时的替代SOC估算方案。CNN-LSTM网络-KAN模型综合利用了CNN的特征提取能力、LSTM网络的时间序列建模优势和KAN的非线性分解能力,从而实现对车辆行驶过程中SOC的估算。最终CNN-LSTM网络-KAN模型通过实车行驶数据集得到了效果验证,结果表明,所提方法对SOC的预测值与SOC真实值之间的平均绝对误差(Mean Absolute Error,MAE)为0.381,均方根误差(Root Mean Square Error,RMSE)为0.467,决定系数R2为0.980。说明所提方法在电流传感器失效情况下,仍然能够有效估算车辆的SOC。 展开更多
关键词 锂电池 荷电状态 卷积神经网络 长短期记忆网络 科尔戈洛夫-阿诺德网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部