期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
卷积神经网络物体检测算法在物流仓库中的应用 被引量:15
1
作者 李天剑 黄斌 +1 位作者 刘江玉 金秋 《计算机工程》 CAS CSCD 北大核心 2018年第6期176-181,共6页
针对传统物体检测算法在复杂环境下检测准确率较低的问题,提出一种新的托盘检测算法。采集真实仓库中包括人和托盘的大量图片进行标注,构建物流仓库的托盘数据库,并将单次多箱探测器检测算法中的基础网络改进为DenseNet网络,利用所标注... 针对传统物体检测算法在复杂环境下检测准确率较低的问题,提出一种新的托盘检测算法。采集真实仓库中包括人和托盘的大量图片进行标注,构建物流仓库的托盘数据库,并将单次多箱探测器检测算法中的基础网络改进为DenseNet网络,利用所标注的托盘数据库进行训练和测试。在测试阶段,结合不同分辨率的多尺度特征图,以增强网络对被检测物体的适应能力,并使用单一网络实现检测任务。实验结果表明,与YOLO算法相比,该算法检测准确率提高了6.1%。 展开更多
关键词 物体检测 托盘检测 卷积神经网路 深度学习 稠密连接卷积神经网络
在线阅读 下载PDF
面向边缘计算的嵌入式FPGA卷积神经网络构建方法 被引量:48
2
作者 卢冶 陈瑶 +2 位作者 李涛 蔡瑞初 宫晓利 《计算机研究与发展》 EI CSCD 北大核心 2018年第3期551-562,共12页
当前,高计算消耗的应用和服务逐渐从集中式云计算中心向网络边缘的嵌入式环境迁移,FPGA因其灵活性和高能效特性,使其在边缘计算的嵌入式系统中得到广泛的应用.传统的FPGA卷积神经网络构造方法存在设计周期长和优化空间小等缺点,无法有... 当前,高计算消耗的应用和服务逐渐从集中式云计算中心向网络边缘的嵌入式环境迁移,FPGA因其灵活性和高能效特性,使其在边缘计算的嵌入式系统中得到广泛的应用.传统的FPGA卷积神经网络构造方法存在设计周期长和优化空间小等缺点,无法有效探索硬件加速器的设计空间,在网络边缘的的嵌入式环境下尤为明显.针对该问题,提出一种面向边缘计算的嵌入式FPGA平台卷积神经网络通用的构建方法.通过设计卷积神经网络函数中的网络层间可复用的加速器核心,以少量硬件资源实现性能优化的卷积神经网络硬件;通过拓展设计、缓存优化及数据流优化等技术,实现HLS设计优化;利用该方法在嵌入式FPGA平台上构建相应卷积神经网络,实验结果表明:优化后的网络模型在与Xeon E5-1620CPU和GTX Titan GPU相比时,在功耗与性能方面具有一定优势,适合应用于边缘计算环境中. 展开更多
关键词 边缘计算 卷积神经网路 FPGA 高层次综合 加速器核心
在线阅读 下载PDF
基于改进卷积神经网络的快速车辆检测 被引量:13
3
作者 朱锋彬 应娜 《传感器与微系统》 CSCD 2018年第12期153-155,160,共4页
为了更加快速精准地识别和定位车辆,提出了一种基于卷积神经网络的改进算法。在建议网络(PN)以及特征提取上进行了优化,在提取基本特征之后嵌入一个轻量级的建议网络,产生候选区域,并在早期丢弃不可能的区域候选框减少背景数量;采用特... 为了更加快速精准地识别和定位车辆,提出了一种基于卷积神经网络的改进算法。在建议网络(PN)以及特征提取上进行了优化,在提取基本特征之后嵌入一个轻量级的建议网络,产生候选区域,并在早期丢弃不可能的区域候选框减少背景数量;采用特征融合技术提取H-yper特征,细化了车辆的识别和定位,并对不同层提取的特征进行串联,有效地提高了车辆检测的质量和精度。在车辆检测和跟踪的大规模数据集和自己采集的车辆数据集上进一步验证,并与目前一些先进的算法进行比较,其中相比于Faster RCNN平均检测质量提高了9. 91%,充分表明了提出的算法的有效性。 展开更多
关键词 车辆检测 卷积神经网路 Hyper特征 特征串联
在线阅读 下载PDF
点特征相似与卷积神经网络相结合的SAR图像分类算法研究 被引量:5
4
作者 许开炜 杨学志 +1 位作者 艾加秋 张安骏 《地理与地理信息科学》 CSCD 北大核心 2019年第3期28-36,I0003,F0002,共11页
基于CNN的像素级SAR图像分类利用了输入图像块的邻域信息,但没有凸显出邻域像元对中心像元分类结果的影响力,导致在高噪声条件下中心像元易出现类别误判。针对该问题,该文提出了一种基于点特征相似性的卷积神经网络(Point feature Simil... 基于CNN的像素级SAR图像分类利用了输入图像块的邻域信息,但没有凸显出邻域像元对中心像元分类结果的影响力,导致在高噪声条件下中心像元易出现类别误判。针对该问题,该文提出了一种基于点特征相似性的卷积神经网络(Point feature Similarity-based Convolutional Neural Network,PSCNN),并将其用于SAR图像分类,以凸显邻域像元对中心像元分类结果的影响力,从而减小误分,提升分类精度。实验结果表明,相比传统基于CNN的SAR图像分类方法,该算法一方面能更充分利用图像块的邻域信息,有效抑制相干斑的影响,提升匀质区域的分类精度;另一方面借助块匹配方式,能够充分保留图像块的结构信息,有效提升边界定位精度。 展开更多
关键词 SAR图像分类 卷积神经网路 点特征相似 边缘保持
在线阅读 下载PDF
基于代价敏感卷积神经网络的人脸年龄识别方法 被引量:1
5
作者 徐东明 任娅琼 马宣 《计算机应用研究》 CSCD 北大核心 2020年第11期3516-3520,共5页
当年龄识别被看做分类问题时,基于卷积神经网络(CNN)的方法通常直接采用一般图像分类的CNN进行年龄识别,常常忽略了进行人脸年龄识别时需要考虑的误分类代价问题。基于上述观察,提出一种基于代价敏感卷积神经网络(CS-CNN)的人脸年龄估... 当年龄识别被看做分类问题时,基于卷积神经网络(CNN)的方法通常直接采用一般图像分类的CNN进行年龄识别,常常忽略了进行人脸年龄识别时需要考虑的误分类代价问题。基于上述观察,提出一种基于代价敏感卷积神经网络(CS-CNN)的人脸年龄估计方法。具体来讲,基于期望类最大原则(desired class maximum principle,DCMP)提出了一种能够使CNN学习到鲁棒人脸特征的代价敏感交叉熵损失函数(CS-CE),最后通过理论与实验的方法进行验证。相较之前的人脸年龄识别方法,该算法提升的效果是显著的。 展开更多
关键词 卷积神经网路 人脸年龄识别 误分类代价 代价敏感性 期望类最大原则
在线阅读 下载PDF
基于多尺度卷积神经网络的轴承故障诊断研究 被引量:3
6
作者 周永庆 《南方农机》 2021年第1期116-117,共2页
针对现有的轴承故障诊断数据特征提取单一的问题,本文提出了一种基于多尺度卷积神经网络的轴承故障诊断方法,以轴承运行时采集的故障信号为研究对象,使用多个尺寸的卷积核提取原始信号,使提取到的信号更加丰富,有效解决特征提取能力不... 针对现有的轴承故障诊断数据特征提取单一的问题,本文提出了一种基于多尺度卷积神经网络的轴承故障诊断方法,以轴承运行时采集的故障信号为研究对象,使用多个尺寸的卷积核提取原始信号,使提取到的信号更加丰富,有效解决特征提取能力不强的问题,无需人工提取故障特征。试验结果表明,该方法具有较高的轴承故障诊断准确率。 展开更多
关键词 轴承 故障诊断 卷积神经网路 深度学习
在线阅读 下载PDF
融入多尺度特征注意力的胶囊神经网络及其在文本分类中的应用 被引量:3
7
作者 王超凡 琚生根 +1 位作者 孙界平 陈润 《中文信息学报》 CSCD 北大核心 2022年第1期65-74,共10页
近些年来,胶囊神经网络(Capsnets)由于拥有强大的文本特征学习能力而被应用到文本分类任务中。目前的研究工作大都将提取到的文本多元语法特征视为同等重要,而忽略了单词所对应的各个多元语法特征的重要程度由具体上下文决定的这一事实... 近些年来,胶囊神经网络(Capsnets)由于拥有强大的文本特征学习能力而被应用到文本分类任务中。目前的研究工作大都将提取到的文本多元语法特征视为同等重要,而忽略了单词所对应的各个多元语法特征的重要程度由具体上下文决定的这一事实,这将直接影响到模型对整个文本的语义理解。针对上述问题,该文提出了多尺度特征部分连接胶囊网络(MulPart-Capsnets)。该方法将多尺度特征注意力融入到Capsnets中,多尺度特征注意力能够自动选择不同尺度的多元语法特征,通过对其进行加权求和,就能为每个单词精确捕捉到丰富的多元语法特征。同时,为了减少子胶囊与父胶囊之间的冗余信息传递,该文也对路由算法进行了改进。该文提出的算法在文本分类任务上针对7个著名的数据集进行了有效性验证,和现有的研究工作相比,性能提高显著,说明该文的算法能够捕获文本中更丰富的多元语法特征,具有更加强大的文本特征学习能力。 展开更多
关键词 胶囊神经网络 多尺度特征注意力 文本分类 路由算法 卷积神经网路
在线阅读 下载PDF
融合空洞卷积与注意模型的U型视盘分割 被引量:3
8
作者 梁礼明 盛校棋 +1 位作者 熊文 郭凯 《计算机工程与设计》 北大核心 2020年第3期808-814,共7页
针对现有的算法对视盘边缘分割精度不高和视盘周围存在大量噪音等难点,提出一种融合空洞卷积与注意门的U型卷积神经网络视盘分割算法。在预处理阶段,利用图像RGB通道的线性组合提取各通道颜色特征信息,利用形态学滤波技术强化视盘边缘... 针对现有的算法对视盘边缘分割精度不高和视盘周围存在大量噪音等难点,提出一种融合空洞卷积与注意门的U型卷积神经网络视盘分割算法。在预处理阶段,利用图像RGB通道的线性组合提取各通道颜色特征信息,利用形态学滤波技术强化视盘边缘信息。在分割阶段,利用多尺度空洞卷积提高感受野,通过注意门提升视盘权重信息,由SoftMax激活函数分割视盘与背景信息。在DRIONS-DB眼底图像数据集上进行的仿真结果表明,视盘分割准确率、精确率和重合率分别达到99.83%,94.84%和97.35%。 展开更多
关键词 空洞卷积 注意门 卷积神经网路 视盘分割 形态学滤波
在线阅读 下载PDF
基于多尺度CNN和BiLSTM的船舶推进永磁同步电机故障诊断 被引量:5
9
作者 闫国华 胡以怀 《上海海事大学学报》 北大核心 2024年第4期83-91,116,共10页
鉴于船舶推进永磁同步电机(permanent magnet synchronous motor,PMSM)的匝间短路和永磁体不可逆均匀退磁故障可能导致严重的船舶航行事故,提出一种基于多尺度卷积神经网络(multi-scale convolutional neural network,MCNN)和双向长短... 鉴于船舶推进永磁同步电机(permanent magnet synchronous motor,PMSM)的匝间短路和永磁体不可逆均匀退磁故障可能导致严重的船舶航行事故,提出一种基于多尺度卷积神经网络(multi-scale convolutional neural network,MCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)的多信号融合的故障诊断方法(MCNN-BiLSTM),用于诊断PMSM故障。该方法以振动和三相电流信号为输入,采用三列并行的不同尺度的CNN结构来提取信号的全局和局部特征;使用BiLSTM进一步提取特征并识别故障类型。在一台PMSM试验台架上进行多种工况下的故障模拟试验,结果表明与采用单一信号和其他深度学习算法的故障诊断方式相比,本文提出的故障诊断方法具有很好的抗噪声干扰能力和泛化能力。 展开更多
关键词 永磁同步电机(PMSM) 匝间短路 均匀退磁故障 多尺度卷积神经网路(MCNN) 双向长短期记忆(BiLSTM) 故障诊断 信号融合
在线阅读 下载PDF
基于MCNN的铁路信号设备故障短文本分类方法研究 被引量:16
10
作者 周庆华 李晓丽 《铁道科学与工程学报》 CAS CSCD 北大核心 2019年第11期2859-2865,共7页
铁路运营维护中产生了大量非结构化的文本数据,针对这些文本信息,提出一种基于Word2Vec+MCNN的文本挖掘分类方法。首先采用Word2Vec训练故障词向量;其次丰富词向量矩阵信息,使网络模型从多方位的特征表示中学习输入句子的故障信息;最后... 铁路运营维护中产生了大量非结构化的文本数据,针对这些文本信息,提出一种基于Word2Vec+MCNN的文本挖掘分类方法。首先采用Word2Vec训练故障词向量;其次丰富词向量矩阵信息,使网络模型从多方位的特征表示中学习输入句子的故障信息;最后使用多池化卷积神经网络模型作为故障分类的方法,得到更多全面的隐藏信息。通过与传统分类器以及其他类型的多池化卷积神经网络模型实验对比,得出本文的模型可以更好地达到分类效果,具有较高的分类准确率。 展开更多
关键词 故障分类 信号设备 Word2Vec 卷积神经网路
在线阅读 下载PDF
基于深度学习的跌倒行为识别 被引量:20
11
作者 马露 裴伟 +2 位作者 朱永英 王春立 王鹏乾 《计算机科学》 CSCD 北大核心 2019年第9期106-112,共7页
随着老龄人口的快速增长,跌倒检测成为医疗健康领域的一个关键问题。准确检测监控视频中的跌倒行为并及时反馈能有效减少老年人因跌倒造成的伤害甚至死亡。针对监控视频中的复杂场景及多种相似性人类行为干扰的情况,文中提出一种改进的F... 随着老龄人口的快速增长,跌倒检测成为医疗健康领域的一个关键问题。准确检测监控视频中的跌倒行为并及时反馈能有效减少老年人因跌倒造成的伤害甚至死亡。针对监控视频中的复杂场景及多种相似性人类行为干扰的情况,文中提出一种改进的FSSD(Feature Fusion Single Shot Multibox Detector)跌倒检测方法。首先,从不同的跌倒视频序列中抽取视频帧形成数据集;然后,将训练样本集输入到改进的FSSD网络中训练直至网络收敛;最后,根据最优化的网络模型测试视频中目标的类别并定位目标。实验结果表明,改进的FSSD 算法可以有效检测每帧图像的跌倒或日常生活活动(Activities of Daily Living,ADL)事件并给出实时反馈,检测速度为24 fps(GTX1050Ti),在保证检测精度的同时满足实时性要求。将改进方法与已有最新方法进行比较,结果表明:改进的FSSD 算法的性能优于其他算法。视频中跌倒行为的检测进一步验证了基于深度学习的识别方法的可行性与高效性。 展开更多
关键词 跌倒检测 卷积神经网路 FSSD目标检测算法 深度学习 行为检测
在线阅读 下载PDF
基于RGB和关节点数据融合模型的双人交互行为识别 被引量:13
12
作者 姬晓飞 秦琳琳 王扬扬 《计算机应用》 CSCD 北大核心 2019年第11期3349-3354,共6页
基于RGB视频序列的双人交互行为识别已经取得了重大进展,但因缺乏深度信息,对于复杂的交互动作识别不够准确。深度传感器(如微软Kinect)能够有效提高全身各关节点的跟踪精度,得到准确的人体运动及变化的三维关节点数据。依据RGB视频和... 基于RGB视频序列的双人交互行为识别已经取得了重大进展,但因缺乏深度信息,对于复杂的交互动作识别不够准确。深度传感器(如微软Kinect)能够有效提高全身各关节点的跟踪精度,得到准确的人体运动及变化的三维关节点数据。依据RGB视频和关节点数据的各自特性,提出一种基于RGB和关节点数据双流信息融合的卷积神经网络(CNN)结构模型。首先,利用Vibe算法获得RGB视频在时间域的感兴趣区域,之后提取关键帧映射到RGB空间,以得到表示视频信息的时空图,并把图送入CNN提取特征;然后,在每帧关节点序列中构建矢量,以提取余弦距离(CD)和归一化幅值(NM)特征,将单帧中的余弦距离和关节点特征按照关节点序列的时间顺序连接,馈送入CNN学习更高级的时序特征;最后,将两种信息源的softmax识别概率矩阵进行融合,得到最终的识别结果。实验结果表明,将RGB视频信息和关节点信息结合可以有效地提高双人交互行为识别结果,在国际公开的SBU Kinect interaction数据库和NTU RGB+D数据库中分别达到92.55%和80.09%的识别率,证明了提出的模型对双人交互行为识别的有效性。 展开更多
关键词 RGB视频 关节点数据 卷积神经网路 softmax 融合 双人交互行为识别
在线阅读 下载PDF
一种基于深度网络的视图重建方法 被引量:2
13
作者 张之敏 乔建忠 +1 位作者 林树宽 王品贺 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第8期1065-1069,共5页
为了解决在仅有单目视图的环境下实现立体匹配的问题,在现有视图重构网络模型Deep3D的基础上,提出了基于加权局部对比归一化约束的全卷积重构模型.该模型采用改进的全卷积神经网络架构作为模型的特征提取模块,以期减少训练参数,降低训... 为了解决在仅有单目视图的环境下实现立体匹配的问题,在现有视图重构网络模型Deep3D的基础上,提出了基于加权局部对比归一化约束的全卷积重构模型.该模型采用改进的全卷积神经网络架构作为模型的特征提取模块,以期减少训练参数,降低训练时间,增加模型的非线性.为了进一步提高重构精度,设计了新的基于加权局部对比归一化的约束条件,并采用结构相似性成本(SSIM)与L 1成本相结合的损失优化函数对模型进行优化.在KITTI 2015数据集上展开实验,并与Deep3D模型及其后续的改进方法进行比较.实验结果表明,在只使用左视图作为训练数据的情况下,生成的右视图在SSIM和峰值信噪比两个指标上有很大提升,能够满足立体匹配方法中右视图的精度要求. 展开更多
关键词 视图重构 卷积神经网路 立体匹配 卷积网络 加权局部对比归一化
在线阅读 下载PDF
浅层特征融合引导的深层网络行人检测 被引量:2
14
作者 杨雅茹 邓红霞 +1 位作者 王哲 于海涛 《计算机工程与应用》 CSCD 北大核心 2020年第2期196-200,共5页
行人检测是目标检测中的一个重要研究方向。针对行人检测算法在复杂场景和目标太小情况下漏检的问题,在Faster R-CNN检测算法的基础上,提出一种基于浅层特征融合引导的深层网络行人检测。通过HOG特征、改进的LBP特征与深度网络特征融合... 行人检测是目标检测中的一个重要研究方向。针对行人检测算法在复杂场景和目标太小情况下漏检的问题,在Faster R-CNN检测算法的基础上,提出一种基于浅层特征融合引导的深层网络行人检测。通过HOG特征、改进的LBP特征与深度网络特征融合获得准确的行人特征,在国际上广泛使用的行人数据集上进行一系列实验。结果表明,所提出的改进方法在检测准确率和速率方面都有所提高。 展开更多
关键词 行人检测 卷积神经网路 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部