期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于神经网络和稳健估计的风电机组状态监测
1
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 北大核心 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 长鼻浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
基于改进卷积-门控网络及Informer的两种中长期风电功率预测方法
2
作者 任鑫 王一妹 +3 位作者 王华 周利 葛畅 韩爽 《现代电力》 北大核心 2025年第3期542-549,共8页
为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络... 为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络-门控循环单元(convolutional neural network-gate recurrent unit,CNN-GRU)的时间尺度降维模型,通过CNN模块及GRU模块分别实现了长时间序列的融合和还原,以及降维后时间序列的预测;另一方面,基于Informer网络的多头注意力机制实现了序列长期依赖特征的挖掘。算例结果表明,两种方法在不同的场景下有着不同的适应性,在第10日的准确率和合格率分别达到74.21%/73.47%、71.81%/74.48%,与常规GRU、CNN、时间卷积网络模型相比,预测精度提升明显,预测效果良好。 展开更多
关键词 中长期功率预测 长序列预测 卷积神经网络-门控循环单元 INFORMER 多头注意力
在线阅读 下载PDF
基于CNN-GRU并联网络的海上风电支撑结构损伤识别 被引量:3
3
作者 李行健 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 EI CSCD 北大核心 2024年第20期229-237,共9页
利用振动响应和深度学习进行结构损伤识别时,会遇到需要较多测点数据、损伤识别准确率不高以及网络容易发生过拟合等问题。为此,提出了一种基于卷积神经网络-门控循环单元(convolutional neural networks-gated recurrent unit,CNN-GRU... 利用振动响应和深度学习进行结构损伤识别时,会遇到需要较多测点数据、损伤识别准确率不高以及网络容易发生过拟合等问题。为此,提出了一种基于卷积神经网络-门控循环单元(convolutional neural networks-gated recurrent unit,CNN-GRU)神经网络并联网络的结构损伤识别新方法。首先,对响应信号进行广义S变换(generalized S-transform,GST)得到其时频图像。然后,分别利用CNN和GRU从时频图像和响应信号中提取时频域特征和时序特征,并将时频域特征和时序特征拼接后输入全连接层和Softmax分类器中进行结构损伤识别。位移激励下的海上风电支撑结构模型试验数据验证结果表明,该方法仅需要一个测点的响应信号,与其他同类方法相比具有更高的识别准确率和效率。 展开更多
关键词 卷积神经网络-门控循环单元(cnn-gru)并联网络 结构损伤识别 深度学习 海上风电支撑结构 广义S变换(GST)
在线阅读 下载PDF
基于GRU-CNN并联神经网络的自动调制识别 被引量:7
4
作者 向建 高勇 《电讯技术》 北大核心 2021年第11期1339-1343,共5页
为提高非合作通信系统的调制方式识别准确率,提出了一种基于并联门控循环单元(Gated Cycle Unit,GRU)神经网络和卷积神经网络(Convolutional Neural Network,CNN)的数字通信信号识别方法。根据调制信号的特性,将笛卡尔坐标下的原始数据... 为提高非合作通信系统的调制方式识别准确率,提出了一种基于并联门控循环单元(Gated Cycle Unit,GRU)神经网络和卷积神经网络(Convolutional Neural Network,CNN)的数字通信信号识别方法。根据调制信号的特性,将笛卡尔坐标下的原始数据转换到极坐标下,同时求原始数据的自相关序列,作为输入数据分别送入GRU和CNN网络中。对含BPSK、QPSK、8PSK、π/4-DQPSK以及四类QAM调制信号集合进行的实测信号实验结果表明,所提方法在低信噪比下能取得较好的识别性能,在0 dB时平均识别率接近90%。 展开更多
关键词 非合作通信系统 自动调制识别 并联神经网络 门控循环单元 卷积神经网络
在线阅读 下载PDF
基于多维复向特征融合与CNN-GRU的转子不平衡量识别方法
5
作者 王坚坚 廖与禾 +1 位作者 杨磊 薛久涛 《中国机械工程》 北大核心 2025年第9期1905-1915,共11页
现有的无试重不平衡量识别算法采用优化算法框架,通过大量迭代运算以逐步逼近最优解,这类策略普遍收敛速度迟缓且易陷入局部极值。为此,利用神经网络直接学习并解析不平衡振动响应与不平衡量之间的复杂映射关系,进而实现不平衡量的高精... 现有的无试重不平衡量识别算法采用优化算法框架,通过大量迭代运算以逐步逼近最优解,这类策略普遍收敛速度迟缓且易陷入局部极值。为此,利用神经网络直接学习并解析不平衡振动响应与不平衡量之间的复杂映射关系,进而实现不平衡量的高精度识别。通过转子动力学模型进行仿真,构建了带标签的足量不平衡振动数据集。针对不平衡数据的多维复向特性,设计了一种特征融合机制。核心算法层面,结合卷积神经网络(CNN)与门控循环单元(GRU)构建了CNN-GRU混合模型,其中,CNN部分负责从振动数据中提取局部空间特征,GRU负责捕捉振动数据中的时序依赖关系,通过整合空间与时间域的信息,显著增强了模型的泛化能力和识别精度。测试集数据和实验台实验的不平衡量识别结果表明,所提方法可以准确预估识别转子的不平衡量,为无试重现场动平衡提供迅速准确的指导。 展开更多
关键词 转子 无试重 不平衡量识别 卷积神经网络-门控循环单元 多维复向特征融合
在线阅读 下载PDF
基于时序生成对抗网络的居民用户非侵入式负荷分解 被引量:3
6
作者 罗平 朱振宇 +3 位作者 樊星驰 孙博宇 张帆 吕强 《电力系统自动化》 EI CSCD 北大核心 2024年第2期71-81,共11页
现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。... 现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。利用降维网络对所有电器有功功率序列组成的高维向量进行降维以降低计算的复杂度,通过复原网络将结果还原为高维向量。基于电器运行状态和深度学习的非侵入式分解方法,运用卷积神经网络-双向门控循环单元构建状态复杂电器的负荷分解回归模型,对状态简单电器利用深度神经网络构建负荷识别分类模型。通过对比其他数据生成方法,以及改变典型公开数据集中生成数据比例所得的负荷分解结果验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷分解 对抗生成网络 降维网络 卷积神经网络-双向门控循环单元 深度神经网络
在线阅读 下载PDF
基于S2S-CNN-GRU的机场离港航班延误预测 被引量:5
7
作者 李善梅 周相志 《中国安全科学学报》 CAS CSCD 北大核心 2023年第8期93-100,共8页
为解决空中交通管理中机场离港航班延误预测难题,采用序列到序列(S2S)框架将门控单元循环网络(GRU)和卷积神经网络(CNN)相结合,提出一种基于S2S-CNN-GRU的航班延误预测模型,主要采用序列到序列的框架结构,利用CNN来捕获机场航班延误状... 为解决空中交通管理中机场离港航班延误预测难题,采用序列到序列(S2S)框架将门控单元循环网络(GRU)和卷积神经网络(CNN)相结合,提出一种基于S2S-CNN-GRU的航班延误预测模型,主要采用序列到序列的框架结构,利用CNN来捕获机场航班延误状态的结构化特征,作为编码器的输入,利用GRU捕获延误状态的时间特征,并作为解码器输出预测结果,提高预测的准确性。采用美国实际数据检验该模型的有效性,并同其他模型进行对比。结果表明:基于S2S-CNN-GRU的航班延误预测模型预测的平均绝对误差(MAE)为3.03,均方根误差(RMSE)为5.82,明显优于其他模型的预测效果。 展开更多
关键词 序列到序列(S2S)-卷积神经网络(CNN)-门控循环单元(GRU)模型 离港航班 延误预测 神经网络 特征提取
在线阅读 下载PDF
基于多传感器信息融合和CNN-BIGRU-Attention模型的液压防水阀故障诊断方法 被引量:7
8
作者 肖遥 向家伟 +1 位作者 汤何胜 任燕 《机电工程》 CAS 北大核心 2024年第9期1517-1528,共12页
在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息... 在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息融合和卷积神经网络-双向门控循环单元-自注意力机制(CNN-BIGRU-Attention)模型的防水阀故障诊断方法。首先,考虑到单一传感器振动信号难以充分表达故障特征,该方法使用了3个传感器采集含噪声的振动信号,并进行了必要的预处理;其次,提取了信号的16个时域特征、5个频域特征以及3个时频域特征,并利用熵权法进行了特征融合,达到了增强特征的目的;然后,将融合的多维特征集输入到CNN-BIGRU-Attention模型中进行了特征识别;最后,利用实际的液压防水阀故障诊断实验,验证了该方法的有效性。研究结果表明:采用多传感器提取的特征更为全面,信息融合有助于捕捉更完整的隐藏数据特征,从而显著提高诊断的准确率;相较于其他特征识别方法,采用CNN-BIGRU-Attention模型的液压防水阀故障诊断准确率可分别提高6.7%、4.6%和14.2%,达到了96.86%,证明了该方法的有效性。该方法将先进的机器学习技术与实际工程应用相结合,为建筑工程问题提供了一种新颖、有效的解决方案。 展开更多
关键词 液压传动系统 液压防水阀 多传感器 滑动时间窗 TEAGER能量算子 熵权法 卷积神经网络-双向门控循环单元-自注意力机制模型
在线阅读 下载PDF
基于模糊聚类和CNN-BIGRU的轨道电路故障预测 被引量:4
9
作者 林俊亭 王帅 +1 位作者 刘恩东 王阳 《振动.测试与诊断》 EI CSCD 北大核心 2023年第3期500-507,619,620,共10页
针对轨道电路稳态环境下故障诊断时效性不足的问题,提出一种基于Gath-Geva(GG)模糊聚类对轨道电路退化状态进行划分,并利用卷积神经网络(convolutional neural network,简称CNN)和双向门控循环单元(bi-directional gated recurrent unit... 针对轨道电路稳态环境下故障诊断时效性不足的问题,提出一种基于Gath-Geva(GG)模糊聚类对轨道电路退化状态进行划分,并利用卷积神经网络(convolutional neural network,简称CNN)和双向门控循环单元(bi-directional gated recurrent unit,简称BIGRU)进行轨道电路故障预测的方法。首先,通过集中监测设备获取ZPW-2000轨道电路各类故障发生前一定时间内的正常工作数据;其次,通过核主成分分析进行特征降维和GG模糊聚类对轨道电路性能退化状态进行阶段划分,识别不同的退化状态;最后,利用CNN-BIGRU混合神经网络挖掘轨道电路不同故障类型数据特征,对轨道电路退化状态所对应的故障类型进行预测。实验结果表明,该算法可以精确划分轨道电路退化状态并实现故障预测,CNN-BIGRU预测模型分类精确度可达97.62%,运行时间仅为13.18 s,能够为轨道电路的多模式健康状态识别提供一种有效的方法。 展开更多
关键词 轨道电路 GG模糊聚类 退化状态划分 卷积神经网络-双向门控循环单元 故障预测
在线阅读 下载PDF
基于CNN-BiGRU-NN模型的短期负荷预测方法 被引量:44
10
作者 曾囿钧 肖先勇 +1 位作者 徐方维 郑林 《中国电力》 CSCD 北大核心 2021年第9期17-23,共7页
为充分挖掘蕴含在大量采集数据中的有效信息,提高短期负荷预测精度,提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)、全连接神经网络(NN)的混合模型的短期负荷预测方法,将海量的历史负荷数据、气象信息、日期信息按时间滑动... 为充分挖掘蕴含在大量采集数据中的有效信息,提高短期负荷预测精度,提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)、全连接神经网络(NN)的混合模型的短期负荷预测方法,将海量的历史负荷数据、气象信息、日期信息按时间滑动窗口构造特征图作为输入,先利用CNN提取特征图中的有效信息,构造特征向量,再将特征向量作为BiGRU-NN网络的输入,采用BiGRU-NN网络进行短期负荷预测。以2016年举办的全国第九届电工数学建模竞赛试题A题中的负荷数据作为实际算例,实验结果表明:该方法与DNN神经网络、GRU神经网络、CNN-LSTM神经网络短期负荷预测法相比,有更高的预测精度。 展开更多
关键词 电力系统 短期负荷预测 卷积神经网络 双向门控循环单元 卷积神经网络-双向门控循环单元神经网络混合模型
在线阅读 下载PDF
改进编码-解码框架下的跨站脚本检测 被引量:3
11
作者 程琪芩 万良 《计算机工程与设计》 北大核心 2021年第1期44-50,共7页
为解决传统机器学习方法特征提取工作艰难导致对跨站脚本检测性能有限的问题,提出应用注意力机制改进编码-解码框架的方法并以此建立模型检测跨站脚本。由卷积神经网络和双向门控循环单元网络并行构成编码器,既考虑输入数据上下文信息,... 为解决传统机器学习方法特征提取工作艰难导致对跨站脚本检测性能有限的问题,提出应用注意力机制改进编码-解码框架的方法并以此建立模型检测跨站脚本。由卷积神经网络和双向门控循环单元网络并行构成编码器,既考虑输入数据上下文信息,又充分提取有效特征;使用注意力机制解决传统编码-解码框架的“分心问题”;使用门控循环单元网络构成解码器,使用分类器进行分类检测。在收集到的数据集上进行仿真实验,验证了模型的有效性和性能优势。 展开更多
关键词 跨站脚本 编码-解码框架 卷积神经网络 门控循环单元网络 注意力机制
在线阅读 下载PDF
基于GRU-CNN的双馈风力发电机电刷滑环电弧故障诊断 被引量:3
12
作者 张博文 莫英东 +1 位作者 王晗钰 袁帅 《农业装备与车辆工程》 2023年第8期45-50,共6页
电刷滑环系统是双馈风力发电机(DFIG)励磁系统的重要组成部分,由于DFIG的电刷滑环故障频发,加之现场缺少可检修条件,严重时因此造成的单机停机故障可令整个电场运行面临瘫痪。电弧故障严重影响电力设备的稳定运行,故障电弧发生时电流一... 电刷滑环系统是双馈风力发电机(DFIG)励磁系统的重要组成部分,由于DFIG的电刷滑环故障频发,加之现场缺少可检修条件,严重时因此造成的单机停机故障可令整个电场运行面临瘫痪。电弧故障严重影响电力设备的稳定运行,故障电弧发生时电流一般较小,其有效值达不到电流保护装置的整定值,而在某些负载工况下,正常工作状态的电流与串联电弧故障电流波形特征非常相似,导致串联电弧难以识别。针对串联电弧故障的识别难点,提出一种基于门控循环单元模型-卷积神经网络(GRU-CNN)的DFIG电刷滑环故障电弧检测模型。首先,分析了DFIG中故障电弧的成因;然后以电流、电压和磁环3种信号作为输入特征值,滤波后构建基于GRU-CNN的故障电弧检测模型;最后搭建滑环装置诊断实验平台,用相同的实验数据和层数训练GRU、CNN和GRU-CNN网络。结果表明,基于GRU-CNN的故障电弧检测模型的精确率和召回率均保持在99%以上,具有较强的工程实践意义。 展开更多
关键词 双馈风力发电机 电刷滑环 门控循环单元-卷积神经网络 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部