期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:33
1
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度智能预测 被引量:7
2
作者 郭力 郑良瑞 冯浪 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第3期401-409,共9页
部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向... 部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。 展开更多
关键词 部分稳定氧化锆 磨削声发射 相关性分析 卷积-双向长短期记忆神经网络 表面粗糙度预测
在线阅读 下载PDF
一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法 被引量:1
3
作者 张朝龙 陈阳 +3 位作者 刘梦玲 张俣峰 华国庆 阴盼昐 《储能科学与技术》 北大核心 2025年第3期1258-1269,共12页
为了解决锂离子电池健康状态(SOH)估计精度不足以及退化过程描述不准确的问题,本文提出了一种基于卷积神经网络-局部注意力-双向长短期记忆神经网络(CNN-LA-BiLSTM)的锂离子电池SOH估计方法。首先,测量锂离子电池在充电阶段的充电时间... 为了解决锂离子电池健康状态(SOH)估计精度不足以及退化过程描述不准确的问题,本文提出了一种基于卷积神经网络-局部注意力-双向长短期记忆神经网络(CNN-LA-BiLSTM)的锂离子电池SOH估计方法。首先,测量锂离子电池在充电阶段的充电时间、电流、电压、容量以及温度等数据。然后,对锂离子电池进行增量容量分析,提取增量容量(IC)曲线的面积作为锂离子电池的电特征;计算锂离子电池充电阶段的温度积分,作为温度特征;将曲线面积与温度相结合,用作锂离子电池SOH估计的联合特征增量容量面积-温度(ICA-T)。随后,利用CNN-LA-BiLSTM方法建立SOH估计模型,在模型中,引入局部注意力(LA)优化卷积神经网络(CNN)的权重和偏差,使用Huber损失函数优化模型参数从而获得良好的SOH估计效果。利用本实验室的2组锂离子电池数据开展测试,结果表明,提出的方法能有效地估计电池的SOH,平均绝对百分比误差(MAPE)为0.5794%,均方根误差(RMSE)为0.0099,决定系数(R2)为0.9961。与传统方法相比,本文提出的方法在电池SOH估计中表现出了更优的性能。 展开更多
关键词 锂离子电池 健康状态估计 卷积神经网络-局部注意力-双向长短期记忆神经网络 增量容量 Huber损失函数
在线阅读 下载PDF
CEEMDAN-CNN-BiLSTM混合模型矿区地表沉降预测 被引量:1
4
作者 王凯 肖星星 +2 位作者 余永明 贾庆磊 赵思仲 《导航定位学报》 CSCD 北大核心 2024年第5期156-163,共8页
为了进一步发挥全球卫星导航系统(GNSS)实时监测优势,对时序数据中的潜藏特征与隐藏信息进行深度挖掘,提高地表沉降预测精度,提出基于自适应噪声完备集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的CEEMDA... 为了进一步发挥全球卫星导航系统(GNSS)实时监测优势,对时序数据中的潜藏特征与隐藏信息进行深度挖掘,提高地表沉降预测精度,提出基于自适应噪声完备集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的CEEMDAN-CNN-BiLSTM混合地表沉降预测方法:以皖北某大型煤矿开采工作面与工业广场区域为验证对象,对比分析稳定区域和重点监测区域数据形态;然后基于CEEMDAN重构监测站高程数据分量,输入CNN模型提取分量隐含信息;最后构建BiLSTM模型,实现对沉降监测点位数据的短期预测。实验结果表明,相较于传统的CNN和长短期记忆模型,CEEMDAN-CNN-BiLSTM混合模型可有效降低预测误差,其中平均绝对百分比误差(MAPE)的降低范围为40%~90%,而均方根(RMS)误差的降低范围为52%~87%;该模型在时空特征捕捉和泛化能力方面表现性能较好,可为GNSS时间序列短期预测提供更为精准和可靠的解决方案。 展开更多
关键词 沉降预测 自动化监测 时序数据 混合模型 自适应噪声完备集合经验模态分解(CEEMDAN)-卷积神经网络(CNN)-双向长短期记忆网络(BiLSTM)
在线阅读 下载PDF
基于VMD-CNN-BiLSTM的轴承故障多级分类识别 被引量:6
5
作者 王祎颜 王衍学 姚家驰 《机电工程》 CAS 北大核心 2024年第9期1554-1564,共11页
双馈风力发电机(DFIG)作为风能发电领域的关键设备之一,保障其稳定运行显得尤为重要。针对DFIG轴承故障的多级分类问题,提出了一种基于参数优化的变分模式分解-卷积神经网络-双向长短期记忆(VMD-CNN-BiLSTM)故障诊断模型。首先,采用改... 双馈风力发电机(DFIG)作为风能发电领域的关键设备之一,保障其稳定运行显得尤为重要。针对DFIG轴承故障的多级分类问题,提出了一种基于参数优化的变分模式分解-卷积神经网络-双向长短期记忆(VMD-CNN-BiLSTM)故障诊断模型。首先,采用改进的麻雀优化算法——鱼鹰-柯西-麻雀搜索算法(OCSSA)对变分模态分解(VMD)的惩罚因子、模态分量进行了优化,OCSSA算法是将鱼鹰算法和柯西变异策略与麻雀算法进行了融合,形成了一种新的优化算法,该算法利用强大的参数搜索能力获取了更精确的频率特征;然后,利用卷积神经网络(CNN)提取了信号的时域和频域特征,并对特征进行了融合;最后,利用双向长短期记忆网络(BiLSTM)学习了故障的序列模式,完成了故障的多级分类任务。研究结果表明:基于OCSSA算法优化的VMD-CNN-BiLSTM模型在多级轴承故障识别方面表现出明显的优势,平均识别准确率可达98.36%,与CNN-LSTM、CNN-BiLSTM和VMD-BiLSTM模型进行对比,该模型具有更卓越的故障诊断性能、出色的泛化能力和快速的计算速度。这一结果充分验证了该模型在双馈风力发电机轴承故障的多级分类识别任务上的有效性,且适用于在线监测和智能诊断,为实现高效、可靠的风能发电提供了重要的实际应用价值。 展开更多
关键词 双馈风力发电机 变分模式分解-卷积神经网络-双向长短期记忆 鱼鹰-柯西-麻雀搜索算法 轴承故障诊断 多级分类 识别准确率 泛化能力
在线阅读 下载PDF
融合情感词典的改进BiLSTM-CNN+Attention情感分类算法 被引量:21
6
作者 杨秀璋 郭明镇 +6 位作者 候红涛 袁杰 李晓峰 李坤琪 汪威 何世群 罗子江 《科学技术与工程》 北大核心 2022年第20期8761-8770,共10页
传统机器学习和深度学习模型在处理情感分类任务时会忽略情感特征词的强度,情感语义关系单薄,造成情感分类的精准度不高。提出一种融合情感词典的改进型BiLSTM-CNN+Attention情感分类算法。首先,通过融合情感词典的特征提取方法优化特... 传统机器学习和深度学习模型在处理情感分类任务时会忽略情感特征词的强度,情感语义关系单薄,造成情感分类的精准度不高。提出一种融合情感词典的改进型BiLSTM-CNN+Attention情感分类算法。首先,通过融合情感词典的特征提取方法优化特征词的权重;其次,利用卷积神经网络(convolutional neural network, CNN)提取局部特征,利用双向长短时记忆网络(bidirectional long and short-term memory, BiLSTM)高效提取上下文语义特征和长距离依赖关系;再结合注意力机制对情感特征加成;最后由Softmax分类器实现文本情感预测。实验结果表明:所提出的情感分类算法在精确率、召回率和F值上均有较大提升。相较于TextCNN、BiLSTM、长短时记忆网络(long and short-term memory, LSTM)、CNN和随机森林模型,所提方法的F值分别提高2.35%、3.63%、4.36%、2.72%和6.35%。这表明所提方法能够充分融合情感特征词的权重,利用上下文语义特征,提高情感分类性能。所提方法具有一定的学术价值和应用前景。 展开更多
关键词 情感分类 双向长短记忆网络-卷积神经网络(BiLSTM-CNN) 注意力机制 情感词典 深度学习
在线阅读 下载PDF
面向驾驶员的个性化健康导航 被引量:2
7
作者 牟伦田 周朝 +4 位作者 赵艺远 赵鹏飞 Bahareh Nakisa Ramesh Jain 尹宝才 《北京工业大学学报》 CAS CSCD 北大核心 2021年第5期508-519,共12页
为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时... 为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时采集的驾驶员、车辆和道路环境等多模态数据,对驾驶员当前健康状态进行估计;最后针对预设健康目标,为驾驶员提供可执行的行为建议,实现对驾驶员健康状态的导航优化.在最关键的实时监测环节,提出基于注意力的卷积神经网络(convolutional neural network,CNN)-长短期记忆网络(long short term memory,LSTM)的多模态融合模型,实现对驾驶员压力、情绪和疲劳3个方面的健康状态估计.在私有数据集和公开数据集上分别开展的实验验证均获得高于90%的检测准确率.实验结果表明,提出的模型和方法可以实时准确监测驾驶员的压力、情绪和疲劳状态,为实现驾驶员的个性化健康导航系统提供有力支撑. 展开更多
关键词 个性化健康导航 多模态融合 注意力 卷积神经网络 长短期记忆网络 卷积神经网络-长短期记忆网络(CNN-LSTM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部