部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向...部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。展开更多
传统机器学习和深度学习模型在处理情感分类任务时会忽略情感特征词的强度,情感语义关系单薄,造成情感分类的精准度不高。提出一种融合情感词典的改进型BiLSTM-CNN+Attention情感分类算法。首先,通过融合情感词典的特征提取方法优化特...传统机器学习和深度学习模型在处理情感分类任务时会忽略情感特征词的强度,情感语义关系单薄,造成情感分类的精准度不高。提出一种融合情感词典的改进型BiLSTM-CNN+Attention情感分类算法。首先,通过融合情感词典的特征提取方法优化特征词的权重;其次,利用卷积神经网络(convolutional neural network, CNN)提取局部特征,利用双向长短时记忆网络(bidirectional long and short-term memory, BiLSTM)高效提取上下文语义特征和长距离依赖关系;再结合注意力机制对情感特征加成;最后由Softmax分类器实现文本情感预测。实验结果表明:所提出的情感分类算法在精确率、召回率和F值上均有较大提升。相较于TextCNN、BiLSTM、长短时记忆网络(long and short-term memory, LSTM)、CNN和随机森林模型,所提方法的F值分别提高2.35%、3.63%、4.36%、2.72%和6.35%。这表明所提方法能够充分融合情感特征词的权重,利用上下文语义特征,提高情感分类性能。所提方法具有一定的学术价值和应用前景。展开更多
为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时...为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时采集的驾驶员、车辆和道路环境等多模态数据,对驾驶员当前健康状态进行估计;最后针对预设健康目标,为驾驶员提供可执行的行为建议,实现对驾驶员健康状态的导航优化.在最关键的实时监测环节,提出基于注意力的卷积神经网络(convolutional neural network,CNN)-长短期记忆网络(long short term memory,LSTM)的多模态融合模型,实现对驾驶员压力、情绪和疲劳3个方面的健康状态估计.在私有数据集和公开数据集上分别开展的实验验证均获得高于90%的检测准确率.实验结果表明,提出的模型和方法可以实时准确监测驾驶员的压力、情绪和疲劳状态,为实现驾驶员的个性化健康导航系统提供有力支撑.展开更多
文摘部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。
文摘传统机器学习和深度学习模型在处理情感分类任务时会忽略情感特征词的强度,情感语义关系单薄,造成情感分类的精准度不高。提出一种融合情感词典的改进型BiLSTM-CNN+Attention情感分类算法。首先,通过融合情感词典的特征提取方法优化特征词的权重;其次,利用卷积神经网络(convolutional neural network, CNN)提取局部特征,利用双向长短时记忆网络(bidirectional long and short-term memory, BiLSTM)高效提取上下文语义特征和长距离依赖关系;再结合注意力机制对情感特征加成;最后由Softmax分类器实现文本情感预测。实验结果表明:所提出的情感分类算法在精确率、召回率和F值上均有较大提升。相较于TextCNN、BiLSTM、长短时记忆网络(long and short-term memory, LSTM)、CNN和随机森林模型,所提方法的F值分别提高2.35%、3.63%、4.36%、2.72%和6.35%。这表明所提方法能够充分融合情感特征词的权重,利用上下文语义特征,提高情感分类性能。所提方法具有一定的学术价值和应用前景。
文摘为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时采集的驾驶员、车辆和道路环境等多模态数据,对驾驶员当前健康状态进行估计;最后针对预设健康目标,为驾驶员提供可执行的行为建议,实现对驾驶员健康状态的导航优化.在最关键的实时监测环节,提出基于注意力的卷积神经网络(convolutional neural network,CNN)-长短期记忆网络(long short term memory,LSTM)的多模态融合模型,实现对驾驶员压力、情绪和疲劳3个方面的健康状态估计.在私有数据集和公开数据集上分别开展的实验验证均获得高于90%的检测准确率.实验结果表明,提出的模型和方法可以实时准确监测驾驶员的压力、情绪和疲劳状态,为实现驾驶员的个性化健康导航系统提供有力支撑.