期刊文献+
共找到173篇文章
< 1 2 9 >
每页显示 20 50 100
基于光谱-空间卷积神经网络的成矿远景区预测研究——以巴基斯坦Chagai地区为例
1
作者 李磊佳 王猛 +3 位作者 胡杰 张博瑞 剧弘旷 刘磊 《地质与勘探》 北大核心 2025年第5期1043-1052,共10页
卷积神经网络(CNN)是成矿远景区预测研究中广泛使用的方法,如何提升CNN模型的泛化能力和鲁棒性仍是当前研究的热点。巴基斯坦西南部的Chagai成矿带西部发育世界级斑岩铜矿床Reko Diq和大型斑岩铜矿Saindak,是开展斑岩型铜矿床成矿远景... 卷积神经网络(CNN)是成矿远景区预测研究中广泛使用的方法,如何提升CNN模型的泛化能力和鲁棒性仍是当前研究的热点。巴基斯坦西南部的Chagai成矿带西部发育世界级斑岩铜矿床Reko Diq和大型斑岩铜矿Saindak,是开展斑岩型铜矿床成矿远景区研究的有利区。本研究以高光谱遥感数据和5个已知矿床为基础,联合多源地质数据构建训练样本,结合假彩色图像合成技术,扩充训练样本。提出空间-光谱卷积神经网络(SSCNN)算法,构建成矿预测模型,对Chagai带西部斑岩型铜矿的成矿远景区进行预测。结果表明,基于Chagai成矿带5个已知矿床和数据扩充方法构建的2477个正样本和11304个负样本,使用4个SSCNN模型的验证集F1-score均超过0.94,最高可达0.98。已知的研究区内37个矿床/矿点均位于预测的成矿远景区内。前人划定的22个找矿靶区内均包含不同概率级别的成矿远景区,空间匹配率达100%。本研究提出的技术方法有助于抑制模型过拟合并提升泛化能力,为成矿远景区预测研究提供了新思路,可拓展应用于其他类型矿床的成矿远景预测工作。 展开更多
关键词 光谱-空间卷积神经网络 成矿远景 斑岩型铜矿 Chagai带 巴基斯坦
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:2
2
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
面向稀土矿区高光谱精细分类的多层注意力卷积神经网络模型
3
作者 范晓勇 李恒凯 +3 位作者 刘锟铭 王秀丽 于阳 李潇雨 《光谱学与光谱分析》 北大核心 2025年第9期2666-2675,共10页
离子吸附型稀土矿是重要的战略资源,长期的粗放式开采导致矿区地表覆盖遭到严重破坏,生态环境面临严重挑战。准确精细的土地利用信息是矿区生态恢复和过程监管的重要基础,利用高光谱影像获取土地利用信息被认为是准确监测大范围矿区的... 离子吸附型稀土矿是重要的战略资源,长期的粗放式开采导致矿区地表覆盖遭到严重破坏,生态环境面临严重挑战。准确精细的土地利用信息是矿区生态恢复和过程监管的重要基础,利用高光谱影像获取土地利用信息被认为是准确监测大范围矿区的有效手段。然而,稀土矿区的地物复杂性和高光谱图像的信息冗余给其精细分类带来了挑战。本研究构建了一种基于面向对象思想和多层注意力卷积神经网络的稀土矿区精细分类方法。首先利用尺度参数估计模型定量分析了稀土矿区影像的多层次最优分割尺度,并获取了分割影像中的光谱、指数、纹理、几何4类影像特征,然后基于距离可分性分析得到了最优特征组合,在此基础上应用多层注意力卷积神经网络(OCTC)模型完成分类,该模型由一维卷积神经网络(1D-CNN)改进而来,通过引进Transformer和CBAM提升模型的特征提取能力和整体分类精度。为验证方法的有效性,以“珠海一号”高光谱遥感影像作为数据源,以江西赣南岭北稀土矿区作为研究区域进行实际验证,并与KNN、RF和1D-CNN分类方法进行精度对比分析。结果表明,该分类方法有效避免了椒盐现象的出现,分类整体性好,并且改进后的多层注意力卷积神经网络模型获得了最佳的分类精度,其总体精度可达88.11%,较其他分类方法提高1.22%~8.84%,Kappa系数提高了0.0159~0.1090。该方法能为稀土矿区的土地利用精细化分类与生产监测、环境保护管理提供方法借鉴与科学参考。 展开更多
关键词 面向对象-卷积神经网络 珠海一号 高光谱遥感 离子型稀土 土地利用
在线阅读 下载PDF
基于分类-回归卷积神经网络的新能源电力系统可靠性评估方法 被引量:5
4
作者 邵成成 任孟极 +2 位作者 徐天元 钱涛 王锡凡 《中国电机工程学报》 EI CSCD 北大核心 2024年第23期9134-9144,I0002,共12页
Monte Carlo模拟(Monte Carlo simulation,MCS)在复杂电力系统可靠性评估中广泛应用,但计算效率较低。针对此,该文提出一种基于卷积神经网络(conventional neural network,CNN)的可靠性评估方法,在时序MCS框架下采用CNN加速系统状态评... Monte Carlo模拟(Monte Carlo simulation,MCS)在复杂电力系统可靠性评估中广泛应用,但计算效率较低。针对此,该文提出一种基于卷积神经网络(conventional neural network,CNN)的可靠性评估方法,在时序MCS框架下采用CNN加速系统状态评估计算。首先,构造反映系统运行状态的特征向量,建立基于CNN的系统失负荷量回归模型;其次,针对可靠性评估样本不均衡、回归训练效率低的问题,进一步建立系统状态分类器,形成基于CNN的分类-回归模型;此外,针对CNN训练样本和实际评估样本不一致的问题,提出分类结果矫正机制,进一步提升模型的实用性;最后,通过改编IEEE-RTS系统的计算分析验证了所提方法的有效性和优越性。 展开更多
关键词 卷积神经网络 可靠性评估 分类-回归 数据驱动
在线阅读 下载PDF
应用卷积神经网络VGG16的星载GNSS-R海冰检测 被引量:4
5
作者 胡媛 华曦帆 +1 位作者 刘卫 江志豪 《遥感信息》 CSCD 北大核心 2024年第2期28-35,共8页
针对全球卫星导航系统反射计(global navigation satellite system-reflection,GNSS-R)海冰检测中延迟-多普勒图(delay-Doppler map,DDM)数据噪声大、消融期精度低等问题,提出将VGG16卷积神经网络模型应用于海冰检测。通过深层的网络结... 针对全球卫星导航系统反射计(global navigation satellite system-reflection,GNSS-R)海冰检测中延迟-多普勒图(delay-Doppler map,DDM)数据噪声大、消融期精度低等问题,提出将VGG16卷积神经网络模型应用于海冰检测。通过深层的网络结构提取DDM多层次特征进行海冰海水分类,以提高海冰检测的精度和稳定性。实验结果表明,与美国国家海洋和大气管理局地表类型数据对比,所提出的基于VGG16海冰检测方法检测准确率为98.02%,有效提升了海冰检测的准确率和稳定性。 展开更多
关键词 海冰遥感 海冰检测 星载GNSS-R 卷积神经网络 延迟-多普勒图 NOAA
在线阅读 下载PDF
光电混合的光学卷积神经网络的片上训练及其抗噪性
6
作者 邵晓锋 苏婧宜 王瑾 《中国光学(中英文)》 北大核心 2025年第5期1124-1131,共8页
光电混合的光学卷积神经网络(OCNN)通过结合光子元件的并行线性计算能力和电子元件的非线性处理优势,在分类任务中展现了巨大的潜力。然而,光子元件的制备误差即不精确性和执行后向传播的FPGA中的电路噪声对网络性能有显著影响。本文搭... 光电混合的光学卷积神经网络(OCNN)通过结合光子元件的并行线性计算能力和电子元件的非线性处理优势,在分类任务中展现了巨大的潜力。然而,光子元件的制备误差即不精确性和执行后向传播的FPGA中的电路噪声对网络性能有显著影响。本文搭建了光电混合的OCNN,其中的线性计算由基于马赫-曾德尔干涉仪(MZI)的光学计算层完成,而池化计算及训练过程则在FPGA中完成。本文着重研究了在FPGA上的片上训练方案,分析了噪声对片上训练效果的影响,并提出了增强OCNN抗噪能力的网络优化策略。具体地,通过调整池化方式和尺寸以增强OCNN的抗噪性能,并在池化层后引入Dropout正则化以进一步提升模型的识别准确率。实验结果表明,本文采用的片上训练方案能够有效修正光子元件的不精确性带来的误差,但电路噪声是限制OCNN性能的主要因素。此外,当电路噪声较大时,其造成的MZI相位误差标准差为0.003,最大池化方式与Dropout正则化的结合可以显著提升OCNN的测试准确率(最高达78%)。本研究为实现OCNN的片上训练提供了重要的参考依据,同时为光电混合架构在高噪声环境下的实际应用探索提供了新的思路。 展开更多
关键词 光学卷积神经网络 片上训练 马赫-曾德尔干涉仪
在线阅读 下载PDF
基于神经网络和稳健估计的风电机组状态监测
7
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 北大核心 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 长鼻浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估 被引量:13
8
作者 陆旭 张理寅 +2 位作者 李更丰 别朝红 段超 《电力系统自动化》 EI CSCD 北大核心 2024年第9期107-119,共13页
针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力... 针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力系统暂态稳定物理方程内嵌至神经网络损失函数,通过神经网络直接逼近物理过程,使输出结果满足物理规律,提高暂态稳定评估的可靠性与可解释性。通过数据与知识双驱动,所提方法不依赖大规模训练数据集,依然具有较好的鲁棒性与泛化能力。此外,所提方法通过卷积神经网络进行特征提取与降维,解决拓扑数据无法直接作为神经网络输入的难题。在含风机的IEEE 9节点和IEEE 39节点测试系统上的实验结果表明,所提方法在准确率、计算效率、泛化能力等方面相较现有方法有显著提升。 展开更多
关键词 内嵌物理知识卷积神经网络 知识-数据混合驱动 功角 暂态稳定性 机器学习 可解释性
在线阅读 下载PDF
融合注意力机制和卷积神经网络的电网暂态电压稳定评估及可解释性分析 被引量:5
9
作者 张哲 秦博宇 +2 位作者 高鑫 丁涛 张逸兴 《电网技术》 EI CSCD 北大核心 2024年第11期4648-4657,I0057,I0056,共12页
提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention mo... 提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention module,CB AM)提升传统CNN的特征捕获能力,考虑模型特性和网络结构设计CBAMCNN组合模块。其次,建立基于CBAM-CNN的电网暂态电压稳定评估模型,揭示运行工况多变场景下系统关键电气量和稳定状态之间的映射关系。最后,基于沙普利值加性解释(Shapley additive explanations,SHAP)理论提出数据驱动模型评估结果的可解释性分析框架,提炼影响样本稳定状态的主导特征,评估各输入特征量对模型输出结果的贡献程度。在典型受端电网仿真系统中验证了所提稳定评估方法的准确性和可解释性分析方法的有效性。 展开更多
关键词 卷积块注意力模块-卷积神经网络 暂态电压稳定评估 沙普利值加性解释理论 可解释性分析
在线阅读 下载PDF
基于卷积神经网络的古陶瓷窑口甄别
10
作者 孙合杨 周越 +3 位作者 黎思佳 李丽 闫灵通 冯向前 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第2期354-358,共5页
古陶瓷作为中华文化的瑰宝,自古以来不仅在国内受到追捧,在国外同样被视若珍宝。伴随着古代商贸的进行,中国古陶瓷遍布全球各地,辗转流传被私人或博物馆收藏,还有部分古陶瓷经墓葬发掘以及沉船打捞后被收藏于博物馆,这类古陶瓷的产地溯... 古陶瓷作为中华文化的瑰宝,自古以来不仅在国内受到追捧,在国外同样被视若珍宝。伴随着古代商贸的进行,中国古陶瓷遍布全球各地,辗转流传被私人或博物馆收藏,还有部分古陶瓷经墓葬发掘以及沉船打捞后被收藏于博物馆,这类古陶瓷的产地溯源一直以来都是陶瓷考古的重点,对于研究古代商贸和文化交流有重要的意义。通过便携式数码显微镜、分光光度计、X射线荧光等方法对从越窑后司岙、越窑寺龙口、龙泉枫洞岩窑、耀州窑发掘出土的青釉瓷样品进行分析测量,获得了来自四个窑青釉瓷样品的微观气泡尺寸分布特征、紫外可见近红外光谱特征、釉的成分数据。将来自四个窑青釉瓷样品的这三种特征作为变量建立卷积神经网络分类模型进行训练和验证,结果表明青釉瓷的微观气泡尺寸分布特征、紫外可见近红外光谱特征以及瓷釉成分数据均有效,但是不同特征的分类准确率差异非常明显。三十次随机划分训练集与测试集的模型训练平均准确率:微观气泡尺寸分布特征模型为75%,紫外可见近红外光谱特征模型为89.2%,成分数据模型为92.1%,成分数据模型准确率最高且训练集与测试集准确率相差最小。将基于不同特征训练好的模型参数保存进行融合后再训练发现基于紫外可见近红外光谱特征的模型与基于微观气泡尺寸分布特征模型融合后准确率提升至93.7%,而将三种特征的模型融合后准确率提升至最高的97.4%。五折交叉验证的结果表明多种特征融合后的模型可以有效避免出现单一特征模型对越窑后司岙以及越窑寺龙口样品交叉错判数较多的情况。综合来看基于卷积神经网络探索更多的古陶瓷有效分类特征对于实现古陶瓷的精准溯源是可行的。 展开更多
关键词 卷积神经网络 气泡 紫外-可见-近红外光谱 X射线荧光 青釉瓷
在线阅读 下载PDF
基于矩阵2-范数池化的卷积神经网络图像识别算法 被引量:11
11
作者 余萍 赵继生 《图学学报》 CSCD 北大核心 2016年第5期694-701,共8页
卷积神经网络中的池化操作可以实现图像变换的缩放不变性,并且对噪声和杂波有很好的鲁棒性。针对图像识别中池化操作提取局部特征时忽略了隐藏在图像中的能量信息的问题,根据图像的能量与矩阵的奇异值之间的关系,并且考虑到图像信息的... 卷积神经网络中的池化操作可以实现图像变换的缩放不变性,并且对噪声和杂波有很好的鲁棒性。针对图像识别中池化操作提取局部特征时忽略了隐藏在图像中的能量信息的问题,根据图像的能量与矩阵的奇异值之间的关系,并且考虑到图像信息的主要能量集中于奇异值中数值较大的几个,提出一种矩阵2-范数池化方法。首先将前一卷积层特征图划分为若干个互不重叠的子块图像,然后分别计算子块图像矩阵的奇异值,将最大奇异值作为每个池化区域的统计结果。利用5种不同的池化方法在Cohn-Kanade、Caltech-101、MNIST和CIFAR-10数据集上进行了大量实验,实验结果表明,相比较于其他方法,该方法具有更好地识别效果和稳健性。 展开更多
关键词 深度学习 卷积神经网络 矩阵2-范数 池化 奇异值
在线阅读 下载PDF
使用基于物理信息的卷积神经网络求解Navier–Stokes方程的物理合理且守恒解
12
作者 李健枫 周良滢 +1 位作者 孙经纬 孙广中 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第4期24-35,23,66,67,共15页
基于物理信息的神经网络方法(PINN)是一种使用神经网络有效求解偏微分方程(PDEs)的新兴方法。基于物理信息的卷积神经网络方法(PICNN)是一种由卷积神经网络(CNNs)增强的PINN的变体。由于卷积神经网络的参数共享特性可以有效地学习空间... 基于物理信息的神经网络方法(PINN)是一种使用神经网络有效求解偏微分方程(PDEs)的新兴方法。基于物理信息的卷积神经网络方法(PICNN)是一种由卷积神经网络(CNNs)增强的PINN的变体。由于卷积神经网络的参数共享特性可以有效地学习空间依赖关系,因此PICNN在一系列偏微分方程的求解问题上取得了更好的结果。然而,应用现有的基于PICNN的方法求解Navier–Stokes方程时会产生振荡的预测解,这违背了物理定律和守恒特性。为了解决这一问题,我们提出了一种将PICNN与有限体积法相结合的新方法,以获得Navier–Stokes方程的物理上合理且具有守恒特性的预测解。我们使用有限体积法推导了Navier–Stokes方程的二阶迎风差分格式。然后我们使用所推导的格式来计算偏导数并构造基于物理信息的损失函数。我们对以稳态Navier–Stokes方程作为控制方程的不同场景进行了实验以评估所提出的方法,包括对流传热问题和顶盖驱动流问题等。实验结果表明,我们的方法可以有效地提高PICNN预测解的物理合理性和准确性。 展开更多
关键词 有限体积法 纳维-斯托克斯方程 偏微分方程 基于物理信息的卷积神经网络
在线阅读 下载PDF
基于全卷积神经网络的黄花梨采收期可见-近红外光谱检测方法 被引量:4
13
作者 刘辉军 魏超宇 +1 位作者 韩文 姚燕 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第9期2932-2936,共5页
水果采收期的成熟度决定了其最终食用品质,选择果实最佳的采收期是提高水果品质的关键措施之一。可见-近红外光谱技术以其快速、无损的检测特点,适合用于水果的成熟度、采收期检测。由于采收期果实品质差异大,传统化学计量学方法需进行... 水果采收期的成熟度决定了其最终食用品质,选择果实最佳的采收期是提高水果品质的关键措施之一。可见-近红外光谱技术以其快速、无损的检测特点,适合用于水果的成熟度、采收期检测。由于采收期果实品质差异大,传统化学计量学方法需进行复杂的光谱预处理,模型难以满足不同的季节、果园等需求。提出了一种基于全卷积神经网络(CNNs)的黄花梨采收期可见-近红外光谱(Vis-NIR)检测方法,利用卷积神经网络进行光谱特征信息提取,采用误差反向传播算法结合随机梯度下降法进行层与层之间的连接权重调节,输出多采收期的Logistic回归结果,实现了黄花梨采收期的端到端检测。设计了包含1个输入层、2个卷积层、1个池化层和1个Softmax输出层等5层的一维全卷积神经网络,采用交叉熵为损失函数,增加L2正则项以防止模型的过拟合,无光谱预处理,对比分析了此方法与PLSDA方法的建模结果。试验采集了两个年度黄花梨样品共450个,其中,第一年度的300个组成训练集,90个样本组成测试集1,第二年度的60个样本组成测试集2。实验结果表明,当测试集样品与训练集来自相同年份时,PLSDA和CNNs模型对测试样品集采收期正确识别率均为100%,当测试集样品来自不同年份时,测试集样品采收期的正确识别率分别降为41.67%和88.33%,相关系数、互信息计算模型的回归系数表明,CNNs模型充分利用了样品全波段信息。可见,CNNs方法通过迭代对卷积核进行优化,实现了更灵活的光谱预处理,可降低模型训练难度,所建模型有较好的可解释性和泛化能力,该方法对建立稳健的水果采收期可见-近红外光谱检测模型有一定的参考价值,有利于实现水果精细化的分期、分批采收。 展开更多
关键词 黄花梨 可见-近红外光谱 卷积神经网络 采收期检测
在线阅读 下载PDF
基于决策树和混合神经网络的大数据攻击增量检测研究 被引量:8
14
作者 谭继安 《计算机应用与软件》 北大核心 2022年第7期329-335,349,共8页
大数据攻击检测是一种不平衡数据的分类问题,传统的深度学习算法对此类问题容易发生过拟合,且计算时间较长。对此,提出基于决策树和混合神经网络的大数据攻击增量检测模型。模型通过卷积神经网络提取数据的特征,基于长短期记忆网络学习... 大数据攻击检测是一种不平衡数据的分类问题,传统的深度学习算法对此类问题容易发生过拟合,且计算时间较长。对此,提出基于决策树和混合神经网络的大数据攻击增量检测模型。模型通过卷积神经网络提取数据的特征,基于长短期记忆网络学习所提取特征之间的依赖关系,防止出现梯度消失问题。设计了基于决策树的神经网络增量学习算法,能够识别出数据的细粒度类标签。实验结果表明,混合神经网络有效地缓解了过拟合问题,提高了模型的计算效率,同时也验证了增量学习的有效性。 展开更多
关键词 深度神经网络 大数据 数据安全 卷积神经网络 决策树 增量学习
在线阅读 下载PDF
卷积神经网络的紫外-可见光谱水质分类方法 被引量:6
15
作者 陈庆 汤斌 +6 位作者 龙邹荣 缪俊锋 黄子恒 戴若辰 石胜辉 赵明富 钟年丙 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第3期731-736,共6页
水质污染源的及时精确定位和精细化的污染防治措施是打赢水污染防治攻坚战的迫切需求,为解决地表水实际水样高锰酸盐指数准确分类的实际问题,以光谱降噪和光谱有效信息提取为切入点,根据紫外-可见光谱数据的特点,提出使用一维卷积神经... 水质污染源的及时精确定位和精细化的污染防治措施是打赢水污染防治攻坚战的迫切需求,为解决地表水实际水样高锰酸盐指数准确分类的实际问题,以光谱降噪和光谱有效信息提取为切入点,根据紫外-可见光谱数据的特点,提出使用一维卷积神经网络处理紫外-可见光谱数据。为验证检测一维卷积神经网络对地表水光谱信号分类的可行性,选取长江的某段流域作为取样点。采集当天的长江上游水、某河水、嘉陵江水,生活污水、500 mg·L^(-1)邻苯二甲酸氢钾溶液来模拟污染水源。将几种水样按不同的配比来模拟当天该流域的水污染变化情况。采集现有的单一水样及混合配比水样的光谱数据,根据各类水样的特征光谱信息进行区分,实现地表水高锰酸盐指数的预测分类,快速确定异常水样的污染来源,通过仿真实验,优化模型参数并完成优化训练。与K最邻近法、支持向量机等传统分类方法相比,该算法在光谱预处理复杂度和定性分析准确度方面有较大优势,在没有复杂的数据预处理前提下,将获取的350条光谱数据建立水质分类模型,随机选择其中245条数据作为训练集,另105条数据作为测试集,模型的混淆矩阵分类精度达99.0%。不仅简化了整个光谱分析流程,而且能保留更多的有效光谱信息,减小人为预处理对紫外-可见光谱数据的影响,实现地表水高锰酸盐指数的准确分类。实验结果表明该方法可对不同水体水样进行准确分类,快速定位污染源,为无法激发荧光的污染物溯源提供了科学依据,为与三维荧光技术辅助配合快速精确定位地表水污染源提供了可能,同时表明了深度学习在紫外-可见光谱法测量实际水样领域有着巨大的应用潜力和研究价值。 展开更多
关键词 水质 紫外-可见光谱 一维卷积神经网络 分类
在线阅读 下载PDF
基于组合-卷积神经网络的中文新闻文本分类 被引量:24
16
作者 张昱 刘开峰 +2 位作者 张全新 王艳歌 高凯龙 《电子学报》 EI CAS CSCD 北大核心 2021年第6期1059-1067,共9页
目前的新闻分类研究以英文居多,而且常用的传统机器学习方法在长文本处理方面,存在局部文本块特征提取不完善的问题.为了解决中文新闻分类缺乏专门术语集的问题,采用构造数据索引的方法,制作了适合中文新闻分类的词汇表,并结合word2vec... 目前的新闻分类研究以英文居多,而且常用的传统机器学习方法在长文本处理方面,存在局部文本块特征提取不完善的问题.为了解决中文新闻分类缺乏专门术语集的问题,采用构造数据索引的方法,制作了适合中文新闻分类的词汇表,并结合word2vec预训练词向量进行文本特征构建.为了解决特征提取不完善的问题,通过改进经典卷积神经网络模型结构,研究不同的卷积和池化操作对分类结果的影响.为提高新闻文本分类的精确率,本文提出并实现了一种组合-卷积神经网络模型,设计了有效的模型正则化和优化方法.实验结果表明,组合-卷积神经网络模型对中文新闻文本分类的精确率达到93.69%,相比最优的传统机器学习方法和经典卷积神经网络模型精确率分别提升6.34%和1.19%,并在召回率和F值两项指标上均优于对比模型. 展开更多
关键词 自然语言处理 词向量 组合-卷积神经网络 中文新闻 文本分类
在线阅读 下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:33
17
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
全卷积网络结合改进的条件随机场-循环神经网络用于SAR图像场景分类 被引量:8
18
作者 汤浩 何楚 《计算机应用》 CSCD 北大核心 2016年第12期3436-3441,共6页
传统合成孔径雷达(SAR)图像基于粗分割像素块提取相关特征,后接支持向量机(SVM)和马尔可夫随机场(MRF)或条件随机场(CRF)进行分类,该方法存在同一像素块内部不同类别像素的误差,而且只考虑邻近区域未充分用到全局信息和结构信息。故考... 传统合成孔径雷达(SAR)图像基于粗分割像素块提取相关特征,后接支持向量机(SVM)和马尔可夫随机场(MRF)或条件随机场(CRF)进行分类,该方法存在同一像素块内部不同类别像素的误差,而且只考虑邻近区域未充分用到全局信息和结构信息。故考虑基于像素点引入全卷积网络(FCN),以ESAR卫星图像为样本,基于像素点级别构建卷积网络进行训练,得到各像素的初始类别分类概率。为了考虑全局像素类别的影响后接CRF-循环神经网络(CRF-RNN),利用FCN得到的初始概率,结合CRF结构得到全局像素类别转移结果,之后进行RNN的迭代进一步优化实验结果。由于基于像素点和考虑了全局信息与结构信息,克服了传统分类的部分缺点,使正确率较传统SVM或CRF方法平均提高了约6.5个百分点。由于CRF-RNN的距离权重是用高斯核人为拟合的,不能随实际训练样本来改变和确定,故存在一定误差,针对该问题提出可训练的全图距离权重卷积网络来改进CRF-RNN,最终实验结果表明改进后方法的正确率较未改进的CRF-RNN又提高了1.04个百分点。 展开更多
关键词 卷积网络 条件随机场-循环神经网络 全局信息 全图距离权重
在线阅读 下载PDF
面向高光谱显微图像血细胞分类的空-谱可分离卷积神经网络 被引量:4
19
作者 时旭 李远 黄鸿 《光学精密工程》 EI CAS CSCD 北大核心 2022年第8期960-969,共10页
深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可... 深度学习已经在高光谱血细胞图像分类中获得广泛应用。然而,传统深度学习模型需要大量标记数据作为样本,忽略了高光谱图像“图谱合一”的性质,不能充分挖掘高光谱图像内蕴信息,且存在参数多、复杂度高问题。针对上述问题,提出了空-谱可分离卷积神经网络(S3CNN),在降低模型复杂度的同时有效提升高光谱血细胞图像分类性能。根据高光谱血细胞图像分布的空间一致性,S3CNN模型首先通过空-谱联合距离(SSCD)得到训练集中各像素点的空-谱近邻,并对这些近邻点赋予与相应中心像素点相同的标签,进行样本扩充,然后在网络模型中采用一组深度卷积和点卷积代替经典卷积,优化了模型复杂度,实现血细胞分类。在Bloodcells1-3和Bloodcells2-2两个不同场景下的高光谱血细胞数据集上的实验结果显示,本文所提算法的总体分类精度分别达到87.32%、89.02%。与其他传统血细胞分类算法相比,本文算法能有效提升高光谱血细胞图像的分类性能。在训练时间上,所采用的可分离卷积模型比经典卷积模型减少27%。实验结果表明,所提网络框架不仅能有效提升高光谱血细胞分类性能,且可减少模型训练时间。 展开更多
关键词 高光谱图像 血细胞分类 卷积神经网络 -谱联合距离 可分离卷积
在线阅读 下载PDF
基于双谱-谱图特征和深度卷积神经网络的HRRP目标识别方法 被引量:12
20
作者 卢旺 张雅声 +1 位作者 徐灿 林财永 《系统工程与电子技术》 EI CSCD 北大核心 2020年第8期1703-1709,共7页
针对雷达高分辨距离像(high resolution range profile,HRRP)目标识别中有效表示和特征提取这一关键问题,提出了基于双谱-谱图特征和深度卷积神经网络(deep convolution neural network,DCNN)的识别方法。首先,提取HRRP的双谱-谱图特征... 针对雷达高分辨距离像(high resolution range profile,HRRP)目标识别中有效表示和特征提取这一关键问题,提出了基于双谱-谱图特征和深度卷积神经网络(deep convolution neural network,DCNN)的识别方法。首先,提取HRRP的双谱-谱图特征表示作为CNN的输入。然后,通过网络训练提取出深层本质特征,实现对雷达目标的识别。最后,对不同特征表示的识别结果进行对比。采用卫星目标实测数据进行实验,结果表明,该方法可以准确有效地识别雷达目标,而且与其他常用特征表示相比,双谱-谱图特征表示具有更好的识别准确率和噪声鲁棒性。 展开更多
关键词 雷达自动目标识别 高分辨距离像 双谱-谱图特征 深度卷积神经网络
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部