期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法
1
作者 包文强 马济通 +1 位作者 赵森 杨正岩 《应用数学和力学》 北大核心 2025年第8期1027-1036,共10页
针对有限计算资源下复合材料的实时监测问题,该文提出了基于超声导波和轻量化卷积神经网络(one⁃di⁃mension convolutional neural network⁃deformable convolution attention,CDCA)的损伤实时识别方法.在该方法中,为了压缩多个路径的导... 针对有限计算资源下复合材料的实时监测问题,该文提出了基于超声导波和轻量化卷积神经网络(one⁃di⁃mension convolutional neural network⁃deformable convolution attention,CDCA)的损伤实时识别方法.在该方法中,为了压缩多个路径的导波信号,首先提出了改进差分驱动的平均聚合(improved differential⁃driven piecewise aggregate ap⁃proximation,IDPAA)算法,利用该方法可以显著减少计算量;其次,提出了轻量化可变形卷积注意力(deformable convolution attention,DCA)机制,让模型聚焦在与损伤相关的像素级特征,从而实现更高效、准确的结构损伤识别;最后,通过结合一维卷积神经网络(one⁃dimension convolutional neural network,1D⁃CNN)和DCA机制,构建了CDCA模型.该模型不仅可以在有限资源环境下运行,还能实现含噪声工况下的损伤实时识别.在真实数据集上验证了所提出方法的有效性.试验结果表明,所提出的损伤识别方法有较高的损伤识别准确性,准确率可达98%,并且大幅提高了模型计算效率,相较于其他先进深度学习模型具有显著的优势. 展开更多
关键词 结构健康监测 超声导波 复合材料 深度学习 量化卷积神经网络
在线阅读 下载PDF
基于轻量化卷积神经网络的纬编针织物组织结构分类
2
作者 胡旭东 汤炜 +4 位作者 曾志发 汝欣 彭来湖 李建强 王博平 《纺织学报》 EI CAS CSCD 北大核心 2024年第5期60-69,共10页
为解决纬编针织物组织结构自动分类时现有方法计算量偏大的问题,基于轻量化卷积神经网络,提出了一种改进的纬编针织物组织结构分类方法。采集纬编针织物组织双面的图像,以准确判断其结构类型。在特征提取步骤中,引入了注意力机制模块,... 为解决纬编针织物组织结构自动分类时现有方法计算量偏大的问题,基于轻量化卷积神经网络,提出了一种改进的纬编针织物组织结构分类方法。采集纬编针织物组织双面的图像,以准确判断其结构类型。在特征提取步骤中,引入了注意力机制模块,修正各个层次特征在通道域和空间域的权重。构建的双分支网络架构能并行提取织物双面的特征信息。在分类阶段,采用了串行策略来融合高维特征向量,以确定纬编针织物组织所属类别。使用准确率、宏精确率、宏召回率以及宏F_(1)评估模型的性能,并统计了参数量和计算复杂度衡量模型的资源消耗。实验结果显示,对于纬编针织物特殊的结构特点,双分支网络架构具有很好的适应性。改进后的模型增强了不同组织间的特征区分度,在受到角度旋转、尺度改变、光照条件变化等干扰下,本文方法的分类准确率可达99.51%,且保持了较小的资源消耗。 展开更多
关键词 纬编针织物 组织结构分类 量化卷积神经网络 图像识别 双分支网络 注意力机制
在线阅读 下载PDF
基于轻量化卷积神经网络的雷达干扰识别技术研究 被引量:3
3
作者 张海舟 贺青 +2 位作者 马泽强 黄亮 李宗阳 《现代雷达》 CSCD 北大核心 2024年第6期79-84,共6页
随着科学技术的不断革新,当前电子战形势日益复杂,雷达面临的电子干扰呈高相参、强欺骗、隐匿性、低功率等特性,严重削弱了雷达的探测和跟踪性能,甚至使其失去作战能力。因此,精准识别雷达面临的有源干扰样式是雷达系统进行针对性干扰... 随着科学技术的不断革新,当前电子战形势日益复杂,雷达面临的电子干扰呈高相参、强欺骗、隐匿性、低功率等特性,严重削弱了雷达的探测和跟踪性能,甚至使其失去作战能力。因此,精准识别雷达面临的有源干扰样式是雷达系统进行针对性干扰抑制的前提。轻量化卷积神经网络(MobileNet)无需人为提取特征便能有效捕获图像中的空间结构信息,在图像处理及分类领域表现优异。文中提出了基于MobileNet的雷达干扰识别模型,应用对雷达有源干扰的时频特性数据集验证模型的分类效果。实验结果表明,所建立的模型对雷达干扰识别分类的F1-score高达约0.9,相比于SIFT模板匹配、CNN等模型在各指标上更优,分类效果更好。 展开更多
关键词 雷达 有源干扰 量化卷积神经网络 分类
在线阅读 下载PDF
基于超轻量化卷积神经网络的番茄病虫害诊断 被引量:3
4
作者 梁凯博 孙立 +3 位作者 汪禹治 靳龙豪 燕雪倩 曾旺 《江苏农业学报》 CSCD 北大核心 2024年第3期438-449,共12页
针对番茄病虫害诊断中存在的传统卷积神经网络结构复杂、难以直接应用于便携终端,以及现有轻量化卷积神经网络特征提取能力弱、识别准确率低、难以满足实际需要等问题,本研究拟在原有轻量化卷积神经网络的基础上,定义超轻量化卷积神经网... 针对番茄病虫害诊断中存在的传统卷积神经网络结构复杂、难以直接应用于便携终端,以及现有轻量化卷积神经网络特征提取能力弱、识别准确率低、难以满足实际需要等问题,本研究拟在原有轻量化卷积神经网络的基础上,定义超轻量化卷积神经网络,设计一种基于SqueezeNet网络改进的超轻量化卷积神经网络,将其用于番茄病虫害诊断任务中。首先,改进SqueezeNet网络中的Fire模块,生成2种适用于不同特征维度的Fire模块,并引入ECA(高效通道注意力)模块以提高模型的特征提取能力;其次,结合扩展型指数线性单元函数(SELU)和Mish函数,替代修正线性单元函数(ReLU)作为激活函数;再次,采用软池化(Softpool)替代原始的最大池化;最后,利用中心损失函数(Center loss)改进指数归一化损失函数(Softmax loss),提高对近似病虫害的识别准确率。本研究选择了8种害虫和9种病害,对害虫、病害、病虫害3类数据集进行数据增强,并探讨了数据的小样本性、不平衡性对模型性能的影响。结果表明,本研究提出的模型具有超轻量化的特点,对害虫、病害、病虫害的识别准确率最高分别可达98.83%、98.14%和97.71%,能够很好地满足番茄病虫害诊断需求。 展开更多
关键词 图像识别 番茄病虫害 超轻量化卷积神经网络 不平衡性
在线阅读 下载PDF
基于轻量化多尺度神经网络的ZPW-2000移频信号检测方法
5
作者 武晓春 刘欣然 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第5期187-197,共11页
针对ZPW-2000移频信号在不平衡牵引电流干扰时低频信号难以检测的问题,提出基于卷积注意力模块的轻量化多尺度神经网络的移频信号低频信息检测方法。首先,根据ZPW-2000移频信号的载频范围,使用不同卷积核大小的多尺度层提取相应载频调... 针对ZPW-2000移频信号在不平衡牵引电流干扰时低频信号难以检测的问题,提出基于卷积注意力模块的轻量化多尺度神经网络的移频信号低频信息检测方法。首先,根据ZPW-2000移频信号的载频范围,使用不同卷积核大小的多尺度层提取相应载频调制下的移频信号特征;其次,建立线性倒残差模块实现网络轻量化,在保证网络检测准确率的同时减少网络参数,缩短网络检测时长;最后,引入卷积注意力模块,标定通道和空间特征权重,提升网络性能,通过全连接层进行分类,输出18种低频信号的概率分布。结果表明:将含有工频谐波干扰等5类噪声的移频信号输入低频检测模型中进行检测,平均准确率可达99.22%,召回率达到99.21%,综合评价指标值为0.992,检测时间不超过0.249 s。该方法检测效果更优,具有良好的抗干扰能力,可为带内噪声干扰条件下检测ZPW-2000移频信号的低频信息提供重要参考。 展开更多
关键词 量化卷积神经网络 谐波干扰 多尺度神经网络 信号检测 ZPW-2000移频信号
在线阅读 下载PDF
FAQ-CNN:面向量化卷积神经网络的嵌入式FPGA可扩展加速框架 被引量:8
6
作者 谢坤鹏 卢冶 +4 位作者 靳宗明 刘义情 龚成 陈新伟 李涛 《计算机研究与发展》 EI CSCD 北大核心 2022年第7期1409-1427,共19页
卷积神经网络(convolutional neural network, CNN)模型量化可有效压缩模型尺寸并提升CNN计算效率.然而,CNN模型量化算法的加速器设计,通常面临算法各异、代码模块复用性差、数据交换效率低、资源利用不充分等问题.对此,提出一种面向量... 卷积神经网络(convolutional neural network, CNN)模型量化可有效压缩模型尺寸并提升CNN计算效率.然而,CNN模型量化算法的加速器设计,通常面临算法各异、代码模块复用性差、数据交换效率低、资源利用不充分等问题.对此,提出一种面向量化CNN的嵌入式FPGA加速框架FAQ-CNN,从计算、通信和存储3方面进行联合优化,FAQ-CNN以软件工具的形式支持快速部署量化CNN模型.首先,设计面向量化算法的组件,将量化算法自身的运算操作和数值映射过程进行分离;综合运用算子融合、双缓冲和流水线等优化技术,提升CNN推理任务内部的并行执行效率.然后,提出分级编码与位宽无关编码规则和并行解码方法,支持低位宽数据的高效批量传输和并行计算.最后,建立资源配置优化模型并转为整数非线性规划问题,在求解时采用启发式剪枝策略缩小设计空间规模.实验结果表明,FAQ-CNN能够高效灵活地实现各类量化CNN加速器.在激活值和权值为16 b时,FAQ-CNN的加速器计算性能是Caffeine的1.4倍;在激活值和权值为8 b时,FAQ-CNN可获得高达1.23TOPS的优越性能. 展开更多
关键词 卷积神经网络量化 量化算法解耦 并行编解码 片上资源建模 加速器设计
在线阅读 下载PDF
基于轻量化卷积神经网络模型的云与云阴影检测方法 被引量:1
7
作者 杨昌军 张昊 +2 位作者 张秀再 李景轩 冯绚 《科学技术与工程》 北大核心 2023年第32期13681-13687,共7页
大多数遥感影像数据不可避免地受到云层的污染导致数据的失效。因此,对云进行检测是非常必要的预处理步骤。随着航天技术的飞速发展,更加轻便的卫星被设计出来,为在这些算力有限的微小卫星上配备遥感影像预处理模型。设计一种高精度、... 大多数遥感影像数据不可避免地受到云层的污染导致数据的失效。因此,对云进行检测是非常必要的预处理步骤。随着航天技术的飞速发展,更加轻便的卫星被设计出来,为在这些算力有限的微小卫星上配备遥感影像预处理模型。设计一种高精度、算力要求低的轻量化云与云阴影检测网络模型具有重要意义。针对上述问题,提出一种基于深度可分离卷积的轻量化卷积神经网络(lightweight M-shaped network,L-MNet)模型,L-MNet网络模型是在M-Net(M-shaped network)模型的基础上引入深度可分离卷积(depthwise separable convolution,DS-Conv),设计一种深度可分离卷积模块(DS-Conv Block),以减小算法的复杂度及计算量。结果表明:所提方法在保证检测精度的前提下,可以有效减小像素级云检测的模型大小及计算量,有助于实现微小卫星在轨云检测的任务。 展开更多
关键词 遥感 云与云阴影检测 深度可分离卷积(DS-Conv) 量化卷积神经网络(L-MNet)
在线阅读 下载PDF
轻量化卷积神经网络在SAR图像语义分割中的应用 被引量:6
8
作者 水文泽 孙盛 +1 位作者 余旭 邓少平 《计算机应用研究》 CSCD 北大核心 2021年第5期1572-1575,1580,共5页
针对合成孔径雷达图像的语义分割问题,构建了一个全新的TerraSAR-X语义分割数据集GDUT-Nansha。然后,为解决传统深度学习方法模型体积大,难以在样本数量偏少的合成孔径雷达图像数据集上应用的问题,对轻量化卷积神经网络ENet模型进行了... 针对合成孔径雷达图像的语义分割问题,构建了一个全新的TerraSAR-X语义分割数据集GDUT-Nansha。然后,为解决传统深度学习方法模型体积大,难以在样本数量偏少的合成孔径雷达图像数据集上应用的问题,对轻量化卷积神经网络ENet模型进行了分析和改造。提出了一种改进的轻量化卷积神经网络模型(revised weighted loss eNet,RWL-ENet);针对合成孔径雷达图像数据集样本不平衡问题,使用了带有权重的损失函数。通过和其他经典卷积神经网络语义分割模型的对比实验,验证了新数据集的可靠性;同时,在参数量和模型体积远远小于其他网络模型的前提下,RWL-ENet模型在像素精度、平均像素精度、平均交并比三个定量指标上分别达到了0.884、0.804和0.645。 展开更多
关键词 合成孔径雷达图像 深度学习 语义分割 量化卷积神经网络
在线阅读 下载PDF
用轻量化卷积神经网络图像语义分割的交通场景理解 被引量:12
9
作者 白傑 郝培涵 陈思汉 《汽车安全与节能学报》 CAS CSCD 2018年第4期433-440,共8页
为提高汽车自动驾驶系统中视觉感知模块的鲁棒性,提出了使用图像语义分割方法进行交通场景理解。采用基于深度学习的语义分割方法,设计了兼顾运行速度和准确率的轻量化卷积神经网络。在特征提取部分,用轻量化特征提取模型MobileNetV2结... 为提高汽车自动驾驶系统中视觉感知模块的鲁棒性,提出了使用图像语义分割方法进行交通场景理解。采用基于深度学习的语义分割方法,设计了兼顾运行速度和准确率的轻量化卷积神经网络。在特征提取部分,用轻量化特征提取模型MobileNetV2结构,用可变形卷积代替步长为2的卷积层;在特征解码部分,缩减卷积核数目、引入多尺度的空洞可变形卷积,补充低层特征细节。用扩充的Pascal VOC 2012数据集进行预训练和评估,用交通场景数据集Cityscapes进行测试。结果表明:该网络结构的准确率达到了平均交互比(mean IoU) 69.2%,超过了用MobileNetV2的DeepLab语义分割网络,运行速度127 ms/帧,占内存1.073 GB,优于使用VGG-16、ResNet-101的结果。 展开更多
关键词 汽车自动驾驶 场景理解 视觉感知 图像语义分割 量化卷积神经网络 深度学习
在线阅读 下载PDF
基于轻量化卷积神经网络的疲劳驾驶检测 被引量:12
10
作者 程泽 林富生 +1 位作者 靳朝 周鼎贺 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第2期142-150,共9页
针对现有疲劳驾驶检测模型在判定准确性与实时性上的不平衡问题,设计了一种基于轻量化卷积神经网络EMLite-Yolo-V4的检测模型。通过使用MobileNet-V2作为目标检测网络Yolo-V4的主干特征提取网络,并且降低卷积通道系数alpha,使得网络参... 针对现有疲劳驾驶检测模型在判定准确性与实时性上的不平衡问题,设计了一种基于轻量化卷积神经网络EMLite-Yolo-V4的检测模型。通过使用MobileNet-V2作为目标检测网络Yolo-V4的主干特征提取网络,并且降低卷积通道系数alpha,使得网络参数量大幅度下降;改进柔性非极大值抑制使得目标框无需再同时考虑得分与重合度,进一步优化检测速率;加入轻量级特征金字塔FPN-tiny并且融合mosaic数据增强方法,以保证模型的检测精度。最后,利用EMLite-Yolo-V4提取面部疲劳特征,PERCLOS与单位时间打哈欠次数对疲劳特征进行状态判定并输出结果。实验表明:该检测模型的准确率达到97.39%,mAP指标为80.02%,单帧检测速度为20.83 ms,模型大小仅为9 MB,有效平衡了疲劳驾驶检测的准确性与实时性。 展开更多
关键词 疲劳驾驶检测 量化卷积神经网络 轻量级特征金字塔 柔性非极大值抑制 数据增强
在线阅读 下载PDF
轻量化卷积注意力特征融合网络的实时语义分割 被引量:1
11
作者 董荣胜 刘意 +1 位作者 马雨琪 李凤英 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第6期935-943,共9页
轻量化卷积神经网络的出现促进了基于深度学习的语义分割技术在低功耗移动设备上的应用.然而,轻量化卷积神经网络一般不考虑融合特征之间的关系,常使用线性方式进行特征融合,网络分割精度有限.针对该问题,提出一种基于编码器-解码器架... 轻量化卷积神经网络的出现促进了基于深度学习的语义分割技术在低功耗移动设备上的应用.然而,轻量化卷积神经网络一般不考虑融合特征之间的关系,常使用线性方式进行特征融合,网络分割精度有限.针对该问题,提出一种基于编码器-解码器架构的轻量化卷积注意力特征融合网络.在编码器中,基于MobileNetv2给出空洞MobileNet模块,以获得足够大的感受野,提升轻量化主干网络的表征能力;在解码器中,给出卷积注意力特征融合模块,通过学习特征平面通道、高度和宽度3个维度间的关系,获取不同特征平面之间的相对权重,并以此对特征平面进行加权融合,提升特征融合的效果.所提网络仅有0.68×106参数量,在未使用预训练模型、后处理和额外数据的情况下,使用NVIDIA 2080Ti显卡在城市道路场景数据集Cityscapes和CamVid上进行实验的结果表明,该网络的平均交并比分别达到了72.7%和67.9%,运行速度分别为86帧/s和105帧/s,在分割精度、网络规模与运行速度之间达到了较好的平衡. 展开更多
关键词 实时语义分割 量化卷积神经网络 注意力机制 特征融合
在线阅读 下载PDF
基于改进Mobilenet v3Small的花生叶部病害轻量化识别研究
12
作者 刘虎 霍欣浩 +2 位作者 何琴英 张泽豪 张道德 《江苏农业科学》 北大核心 2025年第12期207-215,共9页
为了对花生叶部病害进行正确的诊断与有效的治疗来提高花生的产量,使用深度学习进行及时的轻量化识别与检测,在Mobilenet v3Small模型的基础上提出一种新的改进方法,即使用SimAM注意力机制替换原模型中的SE注意力机制,并使用迁移学习对... 为了对花生叶部病害进行正确的诊断与有效的治疗来提高花生的产量,使用深度学习进行及时的轻量化识别与检测,在Mobilenet v3Small模型的基础上提出一种新的改进方法,即使用SimAM注意力机制替换原模型中的SE注意力机制,并使用迁移学习对花生叶部病害进行轻量化识别;然后将PlantVillage数据集作为源域进行预训练,并将预训练得到的共享参数迁移到改进的模型上进行微调优化,最终将采集到的花生叶部病害数据集作为目标域进行试验测试。试验结果表明,通过迁移学习,改进后的Mobilenet v3Small模型识别准确率达到99.5%,比原模型提高2.25百分点,参数量减少30.07%,内存减少2.33 MB。使用Grad-CAM完成热力图可视化,对比发现,SimAM注意力机制比原SE注意力机制以及其他2种注意力机制生成的热力图和原图像中病斑的位置、颜色相似度更高,表明本研究所用方法可以更好地采集花生叶部病害的特征。从各个评价指标来看,本研究提出的方法在花生叶部病害识别上适配度更高、更轻量化,可以更好地在真实场景下进行花生叶部病害识别,可为花生生产种植上提供有效帮助,助力发展智慧农业。 展开更多
关键词 花生叶部病害 迁移学习 量化卷积神经网络 SimAM注意力机制
在线阅读 下载PDF
面向轻量化医学图像分割网络的神经结构搜索 被引量:4
13
作者 张福昌 仲国强 毛玉旭 《计算机科学》 CSCD 北大核心 2022年第10期183-190,共8页
现有的性能优异的医学图像分割模型大都由领域专家手动设计,设计过程往往需要大量专业知识和反复实验。此外,过度复杂的分割模型不仅对硬件资源有较高要求,且分割效率较低。为此,提出了用于自动构建轻量化医学图像分割网络的神经结构搜... 现有的性能优异的医学图像分割模型大都由领域专家手动设计,设计过程往往需要大量专业知识和反复实验。此外,过度复杂的分割模型不仅对硬件资源有较高要求,且分割效率较低。为此,提出了用于自动构建轻量化医学图像分割网络的神经结构搜索方法Auto-LW-MISN(Automatically Light-Weight Medical Image Segmentation Network)。通过构建轻量级搜索空间、设计适用于医学图像分割的搜索超网络、设计添加复杂性约束的可微分搜索策略,建立用于自动搜索轻量化医学图像分割网络的神经结构搜索框架。在显微镜细胞图像、肝脏CT图像和前列腺MR图像等数据集上进行实验,结果表明,Auto-LW-MISN能够针对不同模态的医学图像自动构建轻量化的分割模型,其分割精度相比U-net, Attention U-net, Unet++和NAS-Unet等方法均有提高。 展开更多
关键词 深度学习 可微分神经结构搜索 量化卷积神经网络 自动化网络结构设计 医学图像分割
在线阅读 下载PDF
面向物联网边缘的轻量化DDoS攻击检测方法
14
作者 唐亚东 程光 赵玉宇 《小型微型计算机系统》 北大核心 2025年第4期940-947,共8页
物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在... 物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在物联网边缘中快速、准确地完成DDoS攻击检测,弥补现有方法资源开销大、不精确的缺陷,本文提出了一种基于轻量化卷积神经网络(Lightweight Convolutional Neural Networks,LCNN)的DDoS检测方法.面向物联网流量特性,方法首先提取包级特征和经冗余分析筛选得到的流级特征.之后设计了低参数和运算量的卷积神经网络LCNN,最后基于变维后的特征,快速检测定位攻击.实验结果表明,方法检测准确率达99.4%.同时LCNN在FPGA中能够以较少的资源消耗,保证在1ms时间内完成对一条流的推理判断. 展开更多
关键词 物联网边缘 可编程交换机 量化卷积神经网络 特征选择 DDOS检测
在线阅读 下载PDF
基于改进EfficientNet模型的轻量化滚动轴承故障诊断方法 被引量:2
15
作者 戴莹钰 李靖超 +3 位作者 赵莹 刘艳丽 王申华 张斌 《制造技术与机床》 北大核心 2024年第9期9-15,共7页
相比依赖于人工分析且无法充分提取信号中丰富信息的传统故障诊断方法,采用深度学习模型可以取得更理想的识别效果,但依然存在所使用的模型参数量大、计算成本高的问题。文章提出一种将格拉姆角场(gramian angular field,GAF)编码方式... 相比依赖于人工分析且无法充分提取信号中丰富信息的传统故障诊断方法,采用深度学习模型可以取得更理想的识别效果,但依然存在所使用的模型参数量大、计算成本高的问题。文章提出一种将格拉姆角场(gramian angular field,GAF)编码方式与改进的EfficientNet-B0模型相结合的方法进行轴承的故障诊断。首先,一维轴承信号经过格拉姆角场编码为二维时序图像;其次,将二维图像输入引入注意力机制CBAM模块的EfficientNet-B0模型中自动进行特征提取和分类识别;最后,在仿真试验环节使用凯斯西储大学与德国帕德博恩大学的轴承数据集,基于格拉姆角场与EfficientNet-B0-CBAM模型的诊断方法对轴承故障的识别准确率分别可达到99.90%和98.04%,可以得出所提出的方法在保持模型轻量化特点的基础上拥有更高的识别准确率和更好的泛化能力。 展开更多
关键词 智能故障诊断 格拉姆角场 量化卷积神经网络 EfficientNet-B0 注意力机制 CBAM
在线阅读 下载PDF
基于嵌入式平台和轻量化模型的板材计数装置
16
作者 刘忠英 翟鹏飞 侯维岩 《电子测量技术》 北大核心 2024年第9期46-51,共6页
针对堆叠板材计数过程中人工计数法效率低、准确性不高的问题。本文提出了一套基于嵌入式平台和轻量化模型的板材计数装置,将改进的Faster R-CNN网络植入工控机中运行,可以在工业和物流现场实时识别板材的数量。内置网络使用轻量级网络M... 针对堆叠板材计数过程中人工计数法效率低、准确性不高的问题。本文提出了一套基于嵌入式平台和轻量化模型的板材计数装置,将改进的Faster R-CNN网络植入工控机中运行,可以在工业和物流现场实时识别板材的数量。内置网络使用轻量级网络MobileNetv2融合轻量通道注意力机制ECA作为骨干网络,使用空间注意力机制和倒置残差结构重构FPN架构,并提出了一种基于高度交并比的HIOU_Loc预测框去冗余处理新算法,以缓解小目标检测困难的难题。在基于N4100平台的工控机中运行实验表明:本文所提出的算法对板材计数准确度达到了98.51%,检测一张高分辨率板材图像仅需0.31 s。本装置设计了一个校正模块,经过人工后处理后,对于堆叠板材的计数准确率可以达到100%,满足了实际场景下对板材实时计量的需求。 展开更多
关键词 堆叠板材计数装置 Faster R-CNN 量化卷积神经网络 K-means++ 小目标检测
在线阅读 下载PDF
多任务实时声音事件检测卷积模型与复合数据扩增 被引量:4
17
作者 刘臣 倪仁倢 周立欣 《计算机应用研究》 CSCD 北大核心 2023年第4期1080-1087,共8页
现有的声音事件检测研究多为对离线音频进行分析,且模型参数量较多、计算效率低,不适用于实时检测。提出一种面向多任务实时声音事件检测的轻量化卷积神经网络模型,它将唤醒与检测任务整合成多任务学习框架,此外模型的卷积结构联合了稠... 现有的声音事件检测研究多为对离线音频进行分析,且模型参数量较多、计算效率低,不适用于实时检测。提出一种面向多任务实时声音事件检测的轻量化卷积神经网络模型,它将唤醒与检测任务整合成多任务学习框架,此外模型的卷积结构联合了稠密连接、Ghost模组与SE注意力机制;另外还提出了一种复合数据扩增方法,将音频变换、随机裁剪与频谱掩蔽相结合。实验结果显示,该模型在ESC-10和Urbansound8K数据集上的平均预测准确率高于当前新型的基线模型2%以上,同时模型的参数和内存更少。研究表明,多任务学习的方式节省了计算量,又因为卷积结构复用了中间层特征,模型可以快速地反馈检测结果。另外,复合数据方法相比传统方法使模型获得了更好的性能和鲁棒性。 展开更多
关键词 实时声音事件检测 量化卷积神经网络 多任务学习 数据扩增
在线阅读 下载PDF
基于GADF与SAM-LCNN机制的石化离心风机轴承故障诊断方法
18
作者 刘森 刘美 +2 位作者 韩惠子 崔坤 陈曦 《机电工程》 北大核心 2025年第1期72-81,共10页
针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差... 针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差场将轴承一维振动信号编码为二维图像;然后,构建了融合空间注意力机制的轻量化卷积神经网络;最后,将GADF转换所得二维图像作为融合空间注意力机制的轻量化卷积神经网络的输入,进行了特征提取与故障诊断,分别采用了广东石油化工学院的石化多级离心风机轴承故障数据集与凯斯西储大学轴承故障数据集,对该方法的有效性及优越性进行了验证。研究结果表明:两种数据集的测试集分类准确率分别为99.7%和98.5%;相较于卷积神经网络(CNN)、LeNet-5和MobileNetV2三种对比方法,该离心风机滚动轴承诊断方法具有诊断精度高、诊断速度快和泛化能力强等优点。该方法能够有效地对石化离心风机轴承故障振动信号进行分类,可为石化安全生产提供保障,同时也为其他机械设备故障诊断提供参考。 展开更多
关键词 离心风机 滚动轴承 图像编码 格拉姆角场 量化卷积神经网络 空间注意力机制
在线阅读 下载PDF
基于改进MnasNet网络的低分辨率图像分类算法 被引量:6
19
作者 杨国亮 朱晨 +1 位作者 李放 吴志刚 《传感器与微系统》 CSCD 北大核心 2021年第2期142-145,153,共5页
针对MnasNet网络在CIFAR—10等低分辨率图像数据集上识别率较低的问题,提出一种基于金字塔型的轻量化卷积瓶颈块取代原网络中的倒置残差瓶颈块,构建改进的MnasNet网络(PSMnasNet)。首先,基于图片的分辨率,调整部分瓶颈块的下采样;然后... 针对MnasNet网络在CIFAR—10等低分辨率图像数据集上识别率较低的问题,提出一种基于金字塔型的轻量化卷积瓶颈块取代原网络中的倒置残差瓶颈块,构建改进的MnasNet网络(PSMnasNet)。首先,基于图片的分辨率,调整部分瓶颈块的下采样;然后结合空间金字塔池化方法构建金字塔结构瓶颈(PSBottleneck)块;最后在金字塔型的轻量化卷积瓶颈块中引入超参数控制瓶颈块的空间复杂度和时间复杂度。在CINIC—10低分辨率图像数据集的实验结果表明:由金字塔型的轻量化卷积瓶颈块组成的PSMnasNet网络的参数量比原MnasNet网络减少约22.3%,而且网络的分类精度提高约13.3%。 展开更多
关键词 量化卷积神经网络 图像分类 金字塔结构 低分辨率图像
在线阅读 下载PDF
改进STDC-Seg的实时图像语义分割网络算法 被引量:2
20
作者 兰建平 董冯雷 +2 位作者 杨亚会 董秀娟 胡逸贤 《传感器与微系统》 CSCD 北大核心 2023年第11期110-113,118,共5页
针对目前自动驾驶等领域下语义分割算法实时性不足的问题,提出一种基于编码器—解码器结构的轻量级实时语义分割网络模型。首先,使用短期密集级联(STDC)网络作为骨干网络用以提取图像特征;然后,构建一种轻量级解码器,以减少解码器部分... 针对目前自动驾驶等领域下语义分割算法实时性不足的问题,提出一种基于编码器—解码器结构的轻量级实时语义分割网络模型。首先,使用短期密集级联(STDC)网络作为骨干网络用以提取图像特征;然后,构建一种轻量级解码器,以减少解码器部分的计算开销;最后,为加强解码器阶段的特征表达,提出2种注意力融合模块对不同层次的特征进行加权融合。实验结果表明:该算法在Cityscapes测试集上实现了74.22%mIoU和154.7 fps的性能;与STDC-Seg网络相比,该算法减少了21.3%的参数量,平均交并比(mIoU)高出2.02个百分点。在实时性和准确性方面获得了很好的平衡。 展开更多
关键词 实时语义分割 量化卷积神经网络 深度学习 注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部