期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
融合Word2Vec词嵌入的多核卷积神经网络音乐歌词多情感分类方法 被引量:1
1
作者 张昱 冯亚寒 丁千惠 《科学技术与工程》 北大核心 2024年第20期8598-8605,共8页
目前,音乐歌词情感分类大多以二标签极性情感为主,多情感标签分类较少,并且对于情感性不确定的歌词而言,得到的分类性能不高。为了解决多情感标签研究分类的不足,以及提高分类准确性,提出一种利用Word2Vec词嵌入技术,并使用多核卷积神... 目前,音乐歌词情感分类大多以二标签极性情感为主,多情感标签分类较少,并且对于情感性不确定的歌词而言,得到的分类性能不高。为了解决多情感标签研究分类的不足,以及提高分类准确性,提出一种利用Word2Vec词嵌入技术,并使用多核卷积神经网络作为分类器的音乐歌词多情感分类方法。该方法首先结合音乐歌词文本,进行数据预处理和可视化分析;其次利用Word2Vec词嵌入提取歌词局部特征,构建特征情感向量,挖掘歌词中情感信息,将歌词转化为更利于分类器模型输入的词向量;最后在分类器中,选用卷积神经网络模型,并在此基础上采用不同高度卷积核的方式构建新模型以此得到多情感分类。结果表明:音乐歌词多情感分类的结果达到94.26%,与传统CNN相比,分类精确率提高了6.86%,取得了良好性能。 展开更多
关键词 自然语言处理 情感分类 卷积神经网络 词嵌入 文本分类 音乐歌词
在线阅读 下载PDF
融合主题信息的卷积神经网络文本分类方法研究 被引量:20
2
作者 杨锐 陈伟 +3 位作者 何涛 张敏 李蕊伶 岳芳 《现代情报》 CSSCI 2020年第4期42-49,共8页
[目的/意义]针对能源政策语义信息丰富的特点,研究不同环境下卷积神经网络模型对能源政策文本特征分类识别的效果并提出优化方法,辅助能源政策信息资源进行自动分类操作,方便研究人员更好地进行能源政策解读。[方法/过程]在不同环境下... [目的/意义]针对能源政策语义信息丰富的特点,研究不同环境下卷积神经网络模型对能源政策文本特征分类识别的效果并提出优化方法,辅助能源政策信息资源进行自动分类操作,方便研究人员更好地进行能源政策解读。[方法/过程]在不同环境下利用字符级和词级卷积神经网络模型对能源政策自动文本分类识别效果进行实验,从标题、内容、核心主题句等角度全面对比分析,利用Doc2Vec抽取不同比例核心主题句,将这些主题信息融入卷积神经网络模型中以对实验进行优化。[结果/结论]随着核心主题句抽取率的提高F1均值呈正态分布,当抽取率为70%时达到平衡,神经网络模型评估F1均值为83.45%,较实验中的其它方法均有所提高,通过Doc2Vec提取主题信息,并将其融入卷积神经网络的方法有效提升了卷积神经网络模型自动文本分类的效果。 展开更多
关键词 能源政策 卷积神经网络 文本分类 词向量 文本向量
在线阅读 下载PDF
基于循环神经网络变体和卷积神经网络的文本分类方法 被引量:20
3
作者 李云红 梁思程 +3 位作者 任劼 李敏奇 张博 李禹萱 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期573-579,共7页
针对长文本在文本分类时提取语义关键特征难度大,分类效果差等问题,建立基于循环神经网络变体和卷积神经网络(BGRU-CNN)的混合模型,实现中文长文本的准确分类。首先,通过PV-DM模型将文本表示为句向量,并将其作为神经网络的输入;然后,建... 针对长文本在文本分类时提取语义关键特征难度大,分类效果差等问题,建立基于循环神经网络变体和卷积神经网络(BGRU-CNN)的混合模型,实现中文长文本的准确分类。首先,通过PV-DM模型将文本表示为句向量,并将其作为神经网络的输入;然后,建立BGRU-CNN模型,经双向门控循环单元(B-GRU)实现文本的序列信息表示,利用卷积神经网络(CNN)提取文本的关键特征,通过Softmax分类器实现文本的准确分类;最后,经SogouC和THUCNews中文语料集测试,文本分类准确率分别达到89.87%和94.65%。测试结果表明,循环层提取的文本序列特征通过卷积层得到了进一步优化,文本的分类性能得到了提高。 展开更多
关键词 文本分类 句向量 循环神经网络 卷积神经网络
在线阅读 下载PDF
基于深度卷积神经网络的水稻知识文本分类方法 被引量:14
4
作者 冯帅 许童羽 +3 位作者 周云成 赵冬雪 金宁 王郝日钦 《农业机械学报》 EI CAS CSCD 北大核心 2021年第3期257-264,共8页
为解决文本特征提取不准确和因网络层次加深而导致模型分类性能变差等问题,提出基于深度卷积神经网络的水稻知识文本分类方法。针对水稻知识文本的特点,采用Word2Vec方法进行文本向量化处理,并与OneHot、TF-IDF和Hashing方法进行对比分... 为解决文本特征提取不准确和因网络层次加深而导致模型分类性能变差等问题,提出基于深度卷积神经网络的水稻知识文本分类方法。针对水稻知识文本的特点,采用Word2Vec方法进行文本向量化处理,并与OneHot、TF-IDF和Hashing方法进行对比分析,得出Word2Vec方法具有较高的分类精度,正确率为86.44%,能够有效解决文本向量表示稀疏和信息不完整等问题。通过调整残差网络(Residual network,Res Net)结构,分析残差模块结构和网络层次对分类网络的影响,构建了9种分类网络结构,测试结果表明,具有4层残差模块结构的网络具有较好的特征提取精度,Top-1准确率为99.79%。采用优选出的4层残差模块结构作为基本结构,使用胶囊网络(Capsule network,Caps Net)替代其池化层,设计了水稻知识文本分类模型。与Fast Text、Bi LSTM、Atten-Bi GRU、RCNN、DPCNN和Text CNN等6种文本分类模型的对比分析表明,本文设计的文本分类模型能够较好地对不同样本量和不同复杂程度的水稻知识文本进行精准分类,模型的精准率、召回率和F1值分别不小于95.17%、95.83%和95.50%,正确率为98.62%。本文模型能够实现准确、高效的水稻知识文本分类,满足实际应用需求。 展开更多
关键词 水稻知识文本 文本分类 深度卷积神经网络 向量化处理 特征提取 分类模型
在线阅读 下载PDF
基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型 被引量:43
5
作者 王根生 黄学坚 《小型微型计算机系统》 CSCD 北大核心 2019年第5期1120-1126,共7页
针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出... 针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出基于类频方差改进型TF-IDF算法,分析每个词向量在文本中的权重,构建基于词向量和权重的文本向量表示;最后借助卷积神经网络从局部到全局相关性特征的学习能力,对该大量文本向量进行深度学习.试验结果表明三者结合的文本分类模型不仅能实现文本的准确分类,并且相比传统的机器学习文本分类算法具有更好的分类效果. 展开更多
关键词 Word2vec 改进型TF-IDF算法 卷积神经网络 文本分类 CTMWT
在线阅读 下载PDF
融合self-attention机制的卷积神经网络文本分类模型 被引量:21
6
作者 邵清 马慧萍 《小型微型计算机系统》 CSCD 北大核心 2019年第6期1137-1141,共5页
传统的文本分类算法采用词向量表示文本,忽视了上下文语境中词义的变化.本文通过引入self-attention机制处理词向量,提出一种卷积神经网络模型与关键词提取技术相结合的文本分类模型.该模型对文档进行self-attention操作,以抽取关键信息... 传统的文本分类算法采用词向量表示文本,忽视了上下文语境中词义的变化.本文通过引入self-attention机制处理词向量,提出一种卷积神经网络模型与关键词提取技术相结合的文本分类模型.该模型对文档进行self-attention操作,以抽取关键信息,构建文档特征图,根据卷积神经网络模型和关键词提取技术实现特征向量的分类.在真实数据集上进行性能分析,并与循环神经网络模型、长短时记忆网络模型进行比较,结果表明该分类模型有效地提高了分类的准确性. 展开更多
关键词 文本分类 卷积神经网络 自注意力机制 关键词提取技术
在线阅读 下载PDF
基于卷积神经网络的多通道特征表示文本分类模型 被引量:8
7
作者 黄卫春 邹瑶 +1 位作者 熊李艳 陶自强 《科学技术与工程》 北大核心 2021年第16期6764-6771,共8页
尽管长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolutional neural network,CNN)及其结合体在文本分类任务中取得了很大的突破。但这类模型在对序列信息进行编码时,往往无法同时考虑当前时刻之前和之后的状态,从... 尽管长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolutional neural network,CNN)及其结合体在文本分类任务中取得了很大的突破。但这类模型在对序列信息进行编码时,往往无法同时考虑当前时刻之前和之后的状态,从而导致最后分类效果不佳。此外,多版本预训练词向量比单个版本的预训练词向量包含更多的信息。因此提出了一种基于CNN的多通道特征表示文本分类模型(multi-channel feature representation text classification model based on CNN,MC-CNN)。该模型首先通过两个不同的双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)来对不同来源词向量所表示的文本序列进行正逆序上的特征提取,并以此形成多通道特征;然后利用多尺度卷积网络来进一步使得模型能够同时充分考虑到当前时刻之前以及之后的信息,从而更加有效地进行文本分类。MC-CNN在MR、SST-2、TREC、AG、Yelp_F、Yelp_P数据集上分别达到了81.6%、87.4%、98.6%、94.1%、65.9%、96.8%的准确率,实验结果表明本文模型MC-CNN在文本分类任务中具有优异的效果。 展开更多
关键词 文本分类 多通道特征图 双向长短期记忆(Bi-LSTM) 卷积神经网络(CNN)
在线阅读 下载PDF
基于词义消歧的卷积神经网络文本分类模型 被引量:15
8
作者 薛涛 王雅玲 穆楠 《计算机应用研究》 CSCD 北大核心 2018年第10期2898-2903,共6页
传统文本分类使用word embedding作为文档表示,忽略词在当前上下文的含义,潜在地认为相同词在不同文本中含义相同。针对此问题提出一种词义消歧的卷积神经网络文本分类模型——WSDCNN(word sense disambiguation convolutional neural n... 传统文本分类使用word embedding作为文档表示,忽略词在当前上下文的含义,潜在地认为相同词在不同文本中含义相同。针对此问题提出一种词义消歧的卷积神经网络文本分类模型——WSDCNN(word sense disambiguation convolutional neural network)。使用双向长短时记忆网络(BLSTM)建模上下文,得到词义消歧后的文档特征图;利用卷积神经网络(CNN)进一步提取对文本分类最重要的特征。在四个数据集上进行对比实验,结果表明,所提出方法在两个数据集,特别是文档级数据集上优于先前最好的方法,在另外两个数据集上得到与此前最好方法相当的结果。 展开更多
关键词 文本分类 卷积神经网络 长短时记忆网络 特征提取 自然语言处理
在线阅读 下载PDF
一种基于双通道卷积神经网络的短文本分类方法 被引量:5
9
作者 张小川 桑瑞婷 +1 位作者 周泽红 刘连喜 《重庆理工大学学报(自然科学)》 CAS 北大核心 2019年第1期45-52,共8页
传统卷积神经网络文本分类的效果依赖输入文本表示的准确度,如果文本表示不准确,则输入的噪音将直接导致分类准确性的大幅下降。针对此问题,本文提出一种基于结合词性概率(coefficient part of speech,CPOS)特征和应用场景(application ... 传统卷积神经网络文本分类的效果依赖输入文本表示的准确度,如果文本表示不准确,则输入的噪音将直接导致分类准确性的大幅下降。针对此问题,本文提出一种基于结合词性概率(coefficient part of speech,CPOS)特征和应用场景(application scene,AS)改进的双通道文本卷积神经网络模型Word-CPOS&AS DCNN(WCA-DCNN),通过引入词性的贡献度和设定场景权重2个因子,改善传统方法中短文本表示特征稀疏及不精确的问题。实验结果表明:WCA-DCNN算法在准确率、召回率和F1值等指标上都有明显提升。 展开更多
关键词 卷积神经网络 文本分类 文本表示 词向量 WCA-DCNN
在线阅读 下载PDF
基于卷积神经网络的电力设备缺陷文本分类模型研究 被引量:111
10
作者 刘梓权 王慧芳 +1 位作者 曹靖 邱剑 《电网技术》 EI CSCD 北大核心 2018年第2期644-650,共7页
电网生产管理系统中存在大量闲置的设备缺陷记录文本。针对电力设备缺陷文本的特点,构建了基于卷积神经网络的缺陷文本分类模型。首先通过分析大量电力设备缺陷记录,归纳了电力设备缺陷文本的特点;然后参考中文文本分类的一般流程,并考... 电网生产管理系统中存在大量闲置的设备缺陷记录文本。针对电力设备缺陷文本的特点,构建了基于卷积神经网络的缺陷文本分类模型。首先通过分析大量电力设备缺陷记录,归纳了电力设备缺陷文本的特点;然后参考中文文本分类的一般流程,并考虑缺陷文本的特点,建立了一种基于卷积神经网络的电力缺陷文本分类模型;最后通过算例对基于卷积神经网络的缺陷分类模型和多种传统机器学习分类模型进行全面比较。算例结果表明,所提出的缺陷文本分类模型能显著降低分类错误率,在分类效率上也比较可观。 展开更多
关键词 电力文本处理 缺陷分类 卷积神经网络 机器学习
在线阅读 下载PDF
AM-CNN:一种基于注意力的卷积神经网络文本分类模型 被引量:17
11
作者 王吉俐 彭敦陆 +1 位作者 陈章 刘丛 《小型微型计算机系统》 CSCD 北大核心 2019年第4期710-714,共5页
目前,大多数公开的文本分类数据集是相对平衡的,但对于真实文本分布来说,通常会出现类别极端不平衡的情况,这样的数据集会对模型训练产生影响.针对该问题,论文提出了一种基于卷积神经网络和注意力机制的文本分类算法——AM-CNN(Convolut... 目前,大多数公开的文本分类数据集是相对平衡的,但对于真实文本分布来说,通常会出现类别极端不平衡的情况,这样的数据集会对模型训练产生影响.针对该问题,论文提出了一种基于卷积神经网络和注意力机制的文本分类算法——AM-CNN(Convolutional Neural Network with Attention Mechanism).算法利用循环神经网络捕捉文本的上下文信息,通过引入注意力机制得到文本类别的特征向量矩阵后运用卷积神经网络模型完成文本的分类,以降低在文本分类的训练过程中对小类别的不公平.实验结果表明,该算法对于提高文本分类的精度有较显著的效果. 展开更多
关键词 文本分类 循环神经网络 注意力机制 卷积神经网络 不平衡
在线阅读 下载PDF
全卷积神经网络的字符级文本分类方法 被引量:11
12
作者 张曼 夏战国 +1 位作者 刘兵 周勇 《计算机工程与应用》 CSCD 北大核心 2020年第5期166-172,共7页
传统卷积神经网络文本分类模型全连接层参数过多易引发过拟合问题,为此,将图像分割中的全卷积思想首次引入字符级文本分类任务中,不仅避免了过拟合问题,而且通过卷积层替换全连接层减少了参数数量,从而加快了模型收敛速度。文本分类问... 传统卷积神经网络文本分类模型全连接层参数过多易引发过拟合问题,为此,将图像分割中的全卷积思想首次引入字符级文本分类任务中,不仅避免了过拟合问题,而且通过卷积层替换全连接层减少了参数数量,从而加快了模型收敛速度。文本分类问题中单词、短语等层面的处理方式存在获取文本信息不充分的问题。使用字符级全卷积神经网络进行文本分类,充分获取文本信息,并在卷积池化层后添加局部响应归一化层(LRN),提高了模型的总体性能。通过使用多指标在测试数据集中进行模型评估,充分验证了该模型的有效性,与其他模型相比,提出的模型在二分类与多分类任务中具有更好的分类性能。 展开更多
关键词 文本分类 卷积神经网络 字符级 局部响应归一化层(LRN) 特征提取
在线阅读 下载PDF
基于卷积神经网络与随机森林算法的专利文本分类模型 被引量:24
13
作者 胡杰 李少波 +1 位作者 于丽娅 杨观赐 《科学技术与工程》 北大核心 2018年第6期268-272,共5页
为解决专利文档的自动化分类,根据机械领域专利文本的特点,提出了一种基于卷积神经网络与随机森林的机械专利文本分类模型;该模型应用卷积神经网络作为有监督的文本特征提取器,结合随机森林作为分类器,面向机械领域专利文本进行专利文... 为解决专利文档的自动化分类,根据机械领域专利文本的特点,提出了一种基于卷积神经网络与随机森林的机械专利文本分类模型;该模型应用卷积神经网络作为有监督的文本特征提取器,结合随机森林作为分类器,面向机械领域专利文本进行专利文本分类。该模型被应用在包含96类的107 302份英文机械专利文档的数据集上。实验结果表明,该模型相比k近邻、Na6ve Bayes、随机森林等经典机器学习算法在准确率、召回率以及查全率方面均有显著提高。 展开更多
关键词 机械专利分类 深度卷积神经网络 随机森林 文本特征提取
在线阅读 下载PDF
基于组合-卷积神经网络的中文新闻文本分类 被引量:24
14
作者 张昱 刘开峰 +2 位作者 张全新 王艳歌 高凯龙 《电子学报》 EI CAS CSCD 北大核心 2021年第6期1059-1067,共9页
目前的新闻分类研究以英文居多,而且常用的传统机器学习方法在长文本处理方面,存在局部文本块特征提取不完善的问题.为了解决中文新闻分类缺乏专门术语集的问题,采用构造数据索引的方法,制作了适合中文新闻分类的词汇表,并结合word2vec... 目前的新闻分类研究以英文居多,而且常用的传统机器学习方法在长文本处理方面,存在局部文本块特征提取不完善的问题.为了解决中文新闻分类缺乏专门术语集的问题,采用构造数据索引的方法,制作了适合中文新闻分类的词汇表,并结合word2vec预训练词向量进行文本特征构建.为了解决特征提取不完善的问题,通过改进经典卷积神经网络模型结构,研究不同的卷积和池化操作对分类结果的影响.为提高新闻文本分类的精确率,本文提出并实现了一种组合-卷积神经网络模型,设计了有效的模型正则化和优化方法.实验结果表明,组合-卷积神经网络模型对中文新闻文本分类的精确率达到93.69%,相比最优的传统机器学习方法和经典卷积神经网络模型精确率分别提升6.34%和1.19%,并在召回率和F值两项指标上均优于对比模型. 展开更多
关键词 自然语言处理 词向量 组合-卷积神经网络 中文新闻 文本分类
在线阅读 下载PDF
融合多重注意力机制的卷积神经网络文本分类设计与实现 被引量:14
15
作者 闫跃 霍其润 +1 位作者 李天昊 毛煜 《小型微型计算机系统》 CSCD 北大核心 2021年第2期362-367,共6页
针对单一的卷积神经网络文本分类模型忽视词语在上下文的语义变化,未对影响文本分类效果的关键特征赋予更高权值的问题,提出了一种融合多重注意力机制的卷积神经网络文本分类模型.该模型将注意力机制分别嵌入卷积神经网络的卷积层前后,... 针对单一的卷积神经网络文本分类模型忽视词语在上下文的语义变化,未对影响文本分类效果的关键特征赋予更高权值的问题,提出了一种融合多重注意力机制的卷积神经网络文本分类模型.该模型将注意力机制分别嵌入卷积神经网络的卷积层前后,对影响文本分类效果的高维特征和低维特征进行权值的重新分配,优化特征提取过程,实现特征向量的精确分类.在池化层采用平均池化和最大池化相结合的方法,从而减少特征图的尺寸,避免过拟合现象的发生,最后使用softmax函数进行分类.本文在三个不同的中英文数据集上进行实验,同时设计注意力机制重要性对比实验,分析自注意力机制与CNN结合对文本分类效果提升的重要性,结果表明该分类模型有效地提高了分类的准确性. 展开更多
关键词 自注意力机制 卷积神经网络 特征提取 文本分类
在线阅读 下载PDF
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法 被引量:11
16
作者 孟先艳 崔荣一 +1 位作者 赵亚慧 方明洙 《计算机应用研究》 CSCD 北大核心 2020年第9期2669-2673,共5页
针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经... 针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经网络提取文本特征,并引入卷积神经网络进行特征优化,获得各语种更深层次的文本表示,最后将各语种的文本表示级联输入到softmax函数预测类别。在中英朝科技文献平行数据集上进行了实验验证,结果表明,该方法相比于基准方法分类正确率提高了4%,且对任一语种文本均能正确分类,具有良好的扩展性。 展开更多
关键词 多语种文本分类 长短时记忆单元 卷积神经网络
在线阅读 下载PDF
基于Attention机制的卷积神经网络文本分类模型 被引量:15
17
作者 赵云山 段友祥 《应用科学学报》 CAS CSCD 北大核心 2019年第4期541-550,共10页
文本分类是自然语言处理的重要内容,而有效提取文本全局语义是成功完成分类任务的关键.为了体现卷积神经网络提取特征的非局部重要性,在模型中引入Attention机制并建立了包含4个AttentionCNN层的A-CNN文本分类模型.其中,AttentionCNN层... 文本分类是自然语言处理的重要内容,而有效提取文本全局语义是成功完成分类任务的关键.为了体现卷积神经网络提取特征的非局部重要性,在模型中引入Attention机制并建立了包含4个AttentionCNN层的A-CNN文本分类模型.其中,AttentionCNN层中普通卷积层用于提取局部特征,Attention机制用于生成非局部相关度特征.最后,使用A-CNN模型分别在情感分析、问题分类、问题答案选择等数据集上进行了实验和对比分析.结果表明:相比于其他对比模型,A-CNN模型完成上述3个文本分类任务时的最高精度分别提高了1.9%、4.3%、0.6%,可见A-CNN模型在文本分类任务中具有较高的精度和较强的通用性. 展开更多
关键词 文本分类 卷积神经网络 Attention机制 非局部相关度
在线阅读 下载PDF
基于多头注意力循环卷积神经网络的电力设备缺陷文本分类方法 被引量:14
18
作者 陆世豪 祝云 周振茂 《广东电力》 2021年第6期30-38,共9页
充分利用历史电力设备缺陷描述文本可对新出现的设备故障进行快速分类,提升运维人员的检修效率,为此针对缺陷描述文本具有复杂语义等特点,提出基于多头注意力循环卷积神经网络(multi-head attention recurrent convolutional neural net... 充分利用历史电力设备缺陷描述文本可对新出现的设备故障进行快速分类,提升运维人员的检修效率,为此针对缺陷描述文本具有复杂语义等特点,提出基于多头注意力循环卷积神经网络(multi-head attention recurrent convolutional neural networks,MAT-RCNN)的电力设备缺陷分类方法。首先对电力设备缺陷描述文本进行研究,并分析部分文本分类模型的局限;然后采用分布式表示方法将词语表示为向量形式,并将多头注意力机制与优化的RCNN结合,构建基于MAT-RCNN的电力设备缺陷描述文本分类模型;最后,通过算例比较分析,证明所提方法在语义学习能力、分类效果等方面优于RNN等常规方法。 展开更多
关键词 多头注意力 循环卷积神经网络 文本分类 电力设备缺陷文本 深度语义学习
在线阅读 下载PDF
最近邻注意力和卷积神经网络的文本分类模型 被引量:5
19
作者 朱烨 陈世平 《小型微型计算机系统》 CSCD 北大核心 2020年第2期375-380,共6页
随着自然语言处理(NLP)的不断发展,深度学习被逐渐运用于文本分类中.然而大多数算法都未有效利用训练文本的实例信息,导致文本特征提取不全面.为了有效利用对象的实例信息,本文提出最近邻注意力和卷积神经网络的文本分类模型(CNN-AKNN)... 随着自然语言处理(NLP)的不断发展,深度学习被逐渐运用于文本分类中.然而大多数算法都未有效利用训练文本的实例信息,导致文本特征提取不全面.为了有效利用对象的实例信息,本文提出最近邻注意力和卷积神经网络的文本分类模型(CNN-AKNN).通过引入基于加权卡方距离的最近邻改进算法训练文本,构建文本对象的注意力,然后将注意力机制与卷积神经网络相结合实现全局特征与局部特征的提取,最后通过softmax函数进行文本分类.本文采用搜狗新闻语料库、中山大学语料库以及英文新闻语料库AG_news进行大量实验,结果表明本文所使用的改进算法相较于基准算法效果更优,更有利于提取模型的隐含特征. 展开更多
关键词 卷积神经网络 注意力机制 最近邻算法 加权卡方距离 文本分类
在线阅读 下载PDF
关联语义结合卷积神经网络的文本分类方法 被引量:12
20
作者 魏勇 《控制工程》 CSCD 北大核心 2018年第2期367-370,共4页
针对传统文本分类方法中没有考虑单词语义信息的问题,提出一种结合关联语义和卷积神经网络(CNN)的文本分类方法。首先,对文本进行预处理提取出词干。然后,将每个单词与其相关联的上下文单词相结合,以此构建包含语义信息的词向量。接着... 针对传统文本分类方法中没有考虑单词语义信息的问题,提出一种结合关联语义和卷积神经网络(CNN)的文本分类方法。首先,对文本进行预处理提取出词干。然后,将每个单词与其相关联的上下文单词相结合,以此构建包含语义信息的词向量。接着,将文本的词向量矩阵输入到CNN中,通过卷积层和最大池化层来获得最佳特征,通过输出层获得分类概率。最后,以最小化代价函数来训练CNN模型,以此构建最终的文本分类器。在2个中文数据集上的实验结果表明,该方法能够实现文本的准确分类,具有可行性和有效性。 展开更多
关键词 文本分类 关联语义 卷积神经网络 最大池化
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部