为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵...为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵构成的张量,并配合上改进后的二进制交叉熵损失函数来使得所提出的小数标签能够用于网络训练。针对DOA估计对应的多标签—多分类的问题,使用了包含6层结构的卷积神经网络的输出单元类别以及幅度来分别对离格信号的DOA整数部分与小数部分进行重构。通过与6种现有典型方法的均方根误差(Root Mean Square Error, RMSE)仿真对比,所提方法能够在信噪比为-10 dB的情况下保持着RMSE<0.5°的优秀表现。虽然无法在较少快拍下正常工作,但该方法在快拍数大于8的条件下仍然保持着RMSE<1°的表现性能。同时,在信号数量为5时,所提方法依然具有较高的估计稳定性,且计算速度能够达到毫秒级,用时明显低于其他方法。展开更多
为实现南极磷虾粉中虾青素含量的快速检测,借助计算机视觉和卷积神经网络建立了一种虾粉虾青素含量的测定方法。以70个南极磷虾粉样本,通过高效液相色谱法测定虾青素含量,计算机视觉系统采集图像,将虾青素含量与图像对应组成数据集并对...为实现南极磷虾粉中虾青素含量的快速检测,借助计算机视觉和卷积神经网络建立了一种虾粉虾青素含量的测定方法。以70个南极磷虾粉样本,通过高效液相色谱法测定虾青素含量,计算机视觉系统采集图像,将虾青素含量与图像对应组成数据集并对数据集进行数据增强;使用TensorFlow学习框架构建模型,使用5折交叉验证进行模型调参及评估并选出最优参数模型;随机划分数据集对最优参数模型进行评估,最后随机挑选数据集中的30张图像进行模型验证。结果显示经过交叉验证后的最优参数模型的均方根误差(Root Mean Square Error,RMSE)为3.59;模型评估阶段,模型重复运行3次,测试集的决定系数(Coefficient of Determination,R2)、均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、RMSE的平均值分别为0.9626、1.49、4.22、2.05。模型验证阶段,模型预测虾青素含量的相对误差介于0.10%~6.46%之间,预测结果与观测值之间偏差较小。因此,该虾青素含量预测模型能够较准确地预测虾青素含量,进而实现虾粉虾青素含量的快速无损检测。展开更多
文摘为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵构成的张量,并配合上改进后的二进制交叉熵损失函数来使得所提出的小数标签能够用于网络训练。针对DOA估计对应的多标签—多分类的问题,使用了包含6层结构的卷积神经网络的输出单元类别以及幅度来分别对离格信号的DOA整数部分与小数部分进行重构。通过与6种现有典型方法的均方根误差(Root Mean Square Error, RMSE)仿真对比,所提方法能够在信噪比为-10 dB的情况下保持着RMSE<0.5°的优秀表现。虽然无法在较少快拍下正常工作,但该方法在快拍数大于8的条件下仍然保持着RMSE<1°的表现性能。同时,在信号数量为5时,所提方法依然具有较高的估计稳定性,且计算速度能够达到毫秒级,用时明显低于其他方法。
文摘为实现南极磷虾粉中虾青素含量的快速检测,借助计算机视觉和卷积神经网络建立了一种虾粉虾青素含量的测定方法。以70个南极磷虾粉样本,通过高效液相色谱法测定虾青素含量,计算机视觉系统采集图像,将虾青素含量与图像对应组成数据集并对数据集进行数据增强;使用TensorFlow学习框架构建模型,使用5折交叉验证进行模型调参及评估并选出最优参数模型;随机划分数据集对最优参数模型进行评估,最后随机挑选数据集中的30张图像进行模型验证。结果显示经过交叉验证后的最优参数模型的均方根误差(Root Mean Square Error,RMSE)为3.59;模型评估阶段,模型重复运行3次,测试集的决定系数(Coefficient of Determination,R2)、均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、RMSE的平均值分别为0.9626、1.49、4.22、2.05。模型验证阶段,模型预测虾青素含量的相对误差介于0.10%~6.46%之间,预测结果与观测值之间偏差较小。因此,该虾青素含量预测模型能够较准确地预测虾青素含量,进而实现虾粉虾青素含量的快速无损检测。