期刊文献+
共找到6,193篇文章
< 1 2 250 >
每页显示 20 50 100
基于生成对抗网络和卷积神经网络的高速铁路地震预警干扰信号识别方法
1
作者 宋晋东 栾世成 +7 位作者 李山有 马强 孙文韬 刘赫奕 周学影 姚鹍鹏 黄鹏杰 朱景宝 《中国铁道科学》 北大核心 2025年第1期225-232,共8页
为提升高速铁路地震预警系统中地震事件识别的可靠性,提出基于生成对抗网络(GAN)和卷积神经网络(CNN)的高速铁路地震预警干扰信号识别方法。首先,通过GAN对打夯干扰信号进行数据增强,以实现数据平衡;其次,设计并构建GAN-CNN打夯干扰信... 为提升高速铁路地震预警系统中地震事件识别的可靠性,提出基于生成对抗网络(GAN)和卷积神经网络(CNN)的高速铁路地震预警干扰信号识别方法。首先,通过GAN对打夯干扰信号进行数据增强,以实现数据平衡;其次,设计并构建GAN-CNN打夯干扰信号识别模型,并对其进行训练和测试;最后,通过对比试验,验证该模型在干扰信号识别中的有效性和准确性。结果表明:与未使用GAN进行数据增强的情况相比,所提方法识别打夯干扰信号和地震事件信号的准确率分别为99.60%和100%,性能显著提升;此外,GANCNN模型的交并比、准确率、召回率和综合能力评价指标也得到提高。该方法可为高速铁路地震预警干扰信号识别提供参考。 展开更多
关键词 地震预警 高速铁路 卷积神经网络 生成对抗网络 打夯干扰信号
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测
2
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
基于一维卷积神经网络的钢轨波磨迁移诊断方法
3
作者 王阳 肖宏 +3 位作者 张智海 迟义浩 魏绍磊 方树薇 《铁道学报》 北大核心 2025年第4期115-123,共9页
监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激... 监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激励下车体振动特性,建立车辆-轨道刚柔耦合模型,获取车体垂向加速度仿真数据集。基于一维卷积神经网络搭建钢轨波磨检测模型并在仿真数据集上进行训练,与其他几种常见的检测模型进行对比,最后将模型迁移到实测车体垂向加速度数据集上实现对钢轨波磨的诊断。研究结果表明,钢轨波磨激励的振动能量在运行方向左侧和右侧空气弹簧对应的地板表面位置基本相同,通过车体垂向振动加速度信号无法区分左右两股钢轨的差异。与SVM、LSTM及2D-CNN相比,本文提出的钢轨波磨检测模型精度最高,单个样本推理时间仅为1.00 ms,钢轨波磨识别准确度达92.38%。 展开更多
关键词 钢轨波磨 车载检测 数据驱动 迁移学习 一维卷积神经网络(1D-CNN)
在线阅读 下载PDF
高压电缆终端铅封缺陷超声图像卷积神经网络识别
4
作者 方春华 周固 +4 位作者 邵斌 胡冻三 夏荣 欧阳本红 普子恒 《应用声学》 北大核心 2025年第1期80-87,共8页
高压电缆终端铅封因安装工艺不当以及在外力作用下会出现孔洞、脱粘或裂缝等缺陷,严重影响输电线路稳定运行。为解决传统超声检测铅封缺陷是因通过人工观察超声图像而存在的效率和准确率偏低的问题,该文提出了一种基于卷积神经网络的高... 高压电缆终端铅封因安装工艺不当以及在外力作用下会出现孔洞、脱粘或裂缝等缺陷,严重影响输电线路稳定运行。为解决传统超声检测铅封缺陷是因通过人工观察超声图像而存在的效率和准确率偏低的问题,该文提出了一种基于卷积神经网络的高压电缆终端铅封缺陷超声图像识别方法,可以自动从铅封缺陷超声图像中学习特征并完成缺陷分类识别。建立了4种典型铅封缺陷超声图像样本库,搭建了铅封缺陷超声图像识别模型,采用经过规范化处理的超声图像数据对模型进行训练和测试。结果表明:通过调整卷积神经网络试验参数,能够快速准确地识别出铅封不同类型缺陷,准确率可以达到100%,表明该方法具有良好的鲁棒性,抗干扰能力强,对铅封缺陷具有良好的检测性能,在实际的终端铅封缺陷检测中具有很好的应用前景。 展开更多
关键词 电缆终端 铅封 超声图像识别 卷积神经网络 缺陷检测
在线阅读 下载PDF
基于改进标签策略与卷积神经网络的离格DOA估计方法
5
作者 袁野 吕昭 +2 位作者 汪淼 徐步云 李盼 《电讯技术》 北大核心 2025年第2期261-268,共8页
为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵... 为了能够准确高效地对离格信号的波达方向(Direction of Arrival, DOA)进行估计,利用卷积神经网络来提取信号协方差矩阵中的深度特征信息,并采用改进型标签策略来确保网络的估计精度和效率。具体来说,通过带小数的标签来注释协方差矩阵构成的张量,并配合上改进后的二进制交叉熵损失函数来使得所提出的小数标签能够用于网络训练。针对DOA估计对应的多标签—多分类的问题,使用了包含6层结构的卷积神经网络的输出单元类别以及幅度来分别对离格信号的DOA整数部分与小数部分进行重构。通过与6种现有典型方法的均方根误差(Root Mean Square Error, RMSE)仿真对比,所提方法能够在信噪比为-10 dB的情况下保持着RMSE<0.5°的优秀表现。虽然无法在较少快拍下正常工作,但该方法在快拍数大于8的条件下仍然保持着RMSE<1°的表现性能。同时,在信号数量为5时,所提方法依然具有较高的估计稳定性,且计算速度能够达到毫秒级,用时明显低于其他方法。 展开更多
关键词 离格DOA估计 人工智能 卷积神经网络 监督学习
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断
6
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
融合改进卷积神经网络和层次SVM的鸡蛋外观检测
7
作者 姚万鹏 张凌晓 +1 位作者 赵肖峰 王飞成 《食品与机械》 北大核心 2025年第1期158-164,共7页
[目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2... [目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2)设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。(3)建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。[结果]所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。[结论]所提方法能够有效实现对鸡蛋的在线实时精细化分类。 展开更多
关键词 鸡蛋外观 卷积神经网络 浣熊优化算法 支持向量机 特征提取
在线阅读 下载PDF
基于物联网和卷积神经网络的智能农机安全驾驶系统
8
作者 张砚雪 《农机化研究》 北大核心 2025年第3期211-216,共6页
基于物联网和卷积神经网络的智能农机安全驾驶系统是一种创新的农业技术应用,通过将农机设备的摄像装置连接到互联网上,实现对农机设备和驾驶员的实时监测和数据采集;再利用卷积神经网络技术对采集到的驾驶数据进行特征提取和驾驶行为... 基于物联网和卷积神经网络的智能农机安全驾驶系统是一种创新的农业技术应用,通过将农机设备的摄像装置连接到互联网上,实现对农机设备和驾驶员的实时监测和数据采集;再利用卷积神经网络技术对采集到的驾驶数据进行特征提取和驾驶行为分类与识别,实现对驾驶行为的自动监测和预警。实验结果表明:系统对驾驶行为的类别检测准确率较高,可以提高农机驾驶安全性和驾驶效率,为农业生产提供更加智能化和高效的服务。 展开更多
关键词 物联网 卷积神经网络 智能农机 安全驾驶 驾驶行为 预警
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别
9
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
卷积循环神经网络的高光谱图像解混方法
10
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
基于卷积神经网络和合成数据集训练鉴定棉花种子萌发期的耐盐性
11
作者 王勇攀 马君 +8 位作者 李晨宇 姚梦瑶 王子轩 黄灵芝 朱海艳 刘皖蓉 李波 杨洋 高文伟 《新疆农业科学》 北大核心 2025年第2期261-269,共9页
【目的】建立便捷且精准的棉花种子萌发表型的无损检测方法,鉴定不同棉花种质萌发期的耐盐性。【方法】利用150张不同阶段的棉花种子萌发图像生成合成数据集,并以此进行Mask R-CNN模型训练。利用训练好的模型,对60份棉花种子在125 mmol/... 【目的】建立便捷且精准的棉花种子萌发表型的无损检测方法,鉴定不同棉花种质萌发期的耐盐性。【方法】利用150张不同阶段的棉花种子萌发图像生成合成数据集,并以此进行Mask R-CNN模型训练。利用训练好的模型,对60份棉花种子在125 mmol/L NaCl处理下萌发真实图像中的种壳和胚芽进行实例分割和表型提取,计算种子发芽率、发芽势和胚芽长度,评价60份棉花种子的萌发期耐盐性。【结果】生成的合成数据集包含2000组合成图像及其相应掩模,利用该数据集训练的Mask R-CNN模型对真实图像中种壳和胚芽的分割准确度在95%以上,基于模型提取数据获得的种子发芽率、发芽势、胚芽长度和真实测量值高度线性相关(R 2>0.98,P<0.001),利用模型能够准确的获取表型。各性状的耐盐指数的聚类分析将60份棉花材料分为4个水平;珂字棉4号(0.95)、MC-30(0.88)、陆8早(0.81)等材料的D值较大,其耐盐性较高。【结论】建立了基于卷积神经网络和合成数据集训练的棉花种子萌发期性状鉴定方法,并使用该方法,无损、快速且精准的鉴定了60份棉花种质种子萌发期的耐盐性。 展开更多
关键词 棉花 卷积神经网络 图像分割 种子萌发
在线阅读 下载PDF
基于卷积神经网络的火箭冲压组合发动机燃烧流场重构
12
作者 高屹 刘冰 +3 位作者 张至斌 朱韶华 朱梦豪 秦飞 《燃烧科学与技术》 北大核心 2025年第1期35-45,共11页
本文提出一种基于卷积神经网络架构的燃烧流场重构模型,旨在从低分辨率温度场中重构得到具有复杂流场特征的火箭冲压组合发动机二维温度场.通过大涡模拟方法获得了4种不同构型燃烧室的湍流燃烧流场数据集,使用其中3组构型作为训练集,并... 本文提出一种基于卷积神经网络架构的燃烧流场重构模型,旨在从低分辨率温度场中重构得到具有复杂流场特征的火箭冲压组合发动机二维温度场.通过大涡模拟方法获得了4种不同构型燃烧室的湍流燃烧流场数据集,使用其中3组构型作为训练集,并对另一个构型燃烧室温度场的重构结果进行分析,以对重构神经网络模型进行验证.研究结果表明,该温度场重构模型可以有效从低分辨率温度场中重构得到二维高分辨率温度分布,在中心火箭后缘主要燃烧区域的温度场重构平均误差小于5%,重构精度高于双三次插值算法.本研究数据集和模型可为后续实现组合发动机燃烧状态的智能感知和调控提供支撑. 展开更多
关键词 火箭冲压组合发动机 卷积神经网络 流场重构 湍流燃烧
在线阅读 下载PDF
基于深度卷积神经网络的雷达伺服转台消隙策略
13
作者 鲍子威 吴影生 房景仕 《雷达科学与技术》 北大核心 2025年第1期101-108,118,共9页
精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐... 精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐渐变差,影响雷达跟踪精度。针对此缺陷,本文提出一种基于深度卷积神经网络(DCNN)的精密雷达伺服转台消隙策略,通过采集位置闭环传动轴振动数据,利用连续小波变换(CWT)得到时频图,作为DCNN训练输入,训练后得到识别模型,最后根据模型识别出伺服转台传动机构磨损程度来调整双电机消隙控制的偏置电流和拐点电流,通过对比实验验证了调整后消隙效果优于传统消隙方式,极大提高装备运行的可靠性,降低雷达伺服转台的维护成本。 展开更多
关键词 深度卷积神经网络 精密雷达伺服转台 双电机消隙 可靠性
在线阅读 下载PDF
基于融合卷积神经网络的车辆多目标检测方法
14
作者 曹佳 郑秋梅 段泓舟 《激光杂志》 北大核心 2025年第1期208-213,共6页
在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两... 在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两侧区域,将车道线以内的区域作为车辆多目标检测初始感兴趣区域(ROI),在ROI中采用车底阴影假设区域分割法获取车辆检测目标的假设区域。在原始卷积神经网络的基础上作进一步优化,设计可变形卷积神经网络(DF-R-CNN)模型,将得到的假设区域作为网络模型所需的车辆多目标检测候选区域,通过该模型实现车辆多目标的精准检测。实验结果表明,所提方法的召回率最高值达到了85%,损失函数最低值约为1.8,说明其具有较高的检测精度和检测效果。 展开更多
关键词 卷积神经网络 车道线划分 感兴趣区域ROI 可变形卷积神经网络 车辆多目标检测
在线阅读 下载PDF
采用轻量级卷积神经网络的H.266/通用视频编码跨分量预测
15
作者 邹承益 万帅 +1 位作者 朱志伟 尹宇杰 《西安交通大学学报》 北大核心 2025年第2期180-188,共9页
为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考... 为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考样本之间的空间关系,并应用于边界色度参考样本生成色度预测样本。为降低编解码复杂度,设计网络在二维完成特征融合和预测,优化了现有的同组参数处理不同块大小的训练策略。并且,引入宽度可变卷积,根据不同的块大小调整网络参数。实验结果表明:与H.266/VVC测试模型VTM18.0相比,所提网络在Y(亮度分量)、Cb(蓝色色度分量)、Cr(红色色度分量)上分别实现了0.30%、2.46%、2.25%的码率节省。与其他基于卷积神经网络的跨分量预测方法相比,有效地降低了网络参数和推理复杂度,分别节省了约10%的编码时间和19%的解码时间。 展开更多
关键词 通用视频编码 跨分量预测 轻量级卷积神经网络 注意力机制 宽度可变卷积
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
16
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于卷积神经网络与图卷积网络的水力机械故障诊断
17
作者 吴学春 夏臣智 +4 位作者 肖湘曲 李超顺 李英玉 莫兆祥 吴韬为 《中国农村水利水电》 北大核心 2025年第2期143-147,共5页
水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械... 水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械设备监测信号卷积深度特征,同时利用快速傅里叶变换获取监测信号频谱值,构建监测信号图数据,建立图卷积网络提取样本关联特征。然后利用注意力机制对不同类型特征进行加权求和实现多模态特征融合。最后利用全连接层实现设备的故障诊断。通过水电机组、水泵主机组故障实测数据以及轴承故障数据进行验证,结果表明所提模型能有效实现水力机械设备故障诊断。 展开更多
关键词 水力机械 卷积神经网络 卷积网络 故障诊断
在线阅读 下载PDF
基于卷积神经网络和模糊PID的掘进机截割控制系统研究
18
作者 李英娜 崔彦平 +2 位作者 安博烁 刘百健 靳建伟 《工矿自动化》 北大核心 2025年第1期61-70,137,共11页
针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策... 针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策略由CNN煤岩硬度动态感知模块和截割臂摆速模糊PID控制模块组成。提出一种有效的截割路径,使截割头沿规划路径从上至下进行煤岩截割,以提高断面完整性,减小掘进方向的误差。采用CNN煤岩硬度动态感知模块分析采集的截割电动机电流、截割臂振动加速度、回转油缸压力数据信息,以感知煤岩特性;采用截割臂摆速模糊PID控制模块对感知后的数据进行模糊化与解模糊化处理,输出相应控制参数信号;电液比例阀根据接收到的信号控制液压油的流量和压力,通过阀控液压缸控制截割臂摆速,实现截割臂摆速的自适应控制。现场实验结果表明:当掘进机截割较软介质与煤时,截割臂以高摆速工作;当掘进机截割复杂岩层时,摆速随截割信号的增大而降低,截割信号在0~1之间变动;当掘进机截割较硬岩层时,截割载荷信号接近1,截割臂的摆速降低至0。 展开更多
关键词 悬臂式掘进机 智能截割 截割臂摆速 截割路径 模糊PID控制 煤岩硬度动态感知 卷积神经网络
在线阅读 下载PDF
基于卷积神经网络与支持向量机的适配器落点预测方法
19
作者 苏政宇 杨宝生 +3 位作者 杨婧 唐静楠 姜毅 邓月光 《兵工学报》 北大核心 2025年第2期91-102,共12页
针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程... 针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程适配器动力学运动模型,并通过四阶龙格库塔法对适配器运动轨迹进行数值求解,获得大量的适配器运动状态参数和落点信息;提出CNN-SVM的适配器落点预测模型,采用Adam优化器优化CNN网络性能,并通过网格搜索法获得SVM最佳的超参数。研究结果表明:CNN-SVM模型对适配器落点预测具有较好的求解精度和较强的泛化性能,其训练集和测试集的R 2值均大于0.99,同时该模型的平均绝对误差均小于0.1 m;在相同的计算资源且满足任务预测精度的条件下,其求解时间仅为传统数值积分方法的8.5%。该模型在实际应用中具备显著的优势,为发射过程中适配器分离落点快速预测提供了一种有效的解决方案。 展开更多
关键词 落点预测 适配器 卷积神经网络 支持向量机
在线阅读 下载PDF
计算机视觉结合卷积神经网络快速检测南极磷虾粉中的虾青素含量
20
作者 张全通 郑尧 +2 位作者 杨柳 张帅帅 郭全友 《食品工业科技》 北大核心 2025年第3期11-18,共8页
为实现南极磷虾粉中虾青素含量的快速检测,借助计算机视觉和卷积神经网络建立了一种虾粉虾青素含量的测定方法。以70个南极磷虾粉样本,通过高效液相色谱法测定虾青素含量,计算机视觉系统采集图像,将虾青素含量与图像对应组成数据集并对... 为实现南极磷虾粉中虾青素含量的快速检测,借助计算机视觉和卷积神经网络建立了一种虾粉虾青素含量的测定方法。以70个南极磷虾粉样本,通过高效液相色谱法测定虾青素含量,计算机视觉系统采集图像,将虾青素含量与图像对应组成数据集并对数据集进行数据增强;使用TensorFlow学习框架构建模型,使用5折交叉验证进行模型调参及评估并选出最优参数模型;随机划分数据集对最优参数模型进行评估,最后随机挑选数据集中的30张图像进行模型验证。结果显示经过交叉验证后的最优参数模型的均方根误差(Root Mean Square Error,RMSE)为3.59;模型评估阶段,模型重复运行3次,测试集的决定系数(Coefficient of Determination,R2)、均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、RMSE的平均值分别为0.9626、1.49、4.22、2.05。模型验证阶段,模型预测虾青素含量的相对误差介于0.10%~6.46%之间,预测结果与观测值之间偏差较小。因此,该虾青素含量预测模型能够较准确地预测虾青素含量,进而实现虾粉虾青素含量的快速无损检测。 展开更多
关键词 计算机视觉 卷积神经网络 南极磷虾 虾青素 快速检测
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部