期刊文献+
共找到510篇文章
< 1 2 26 >
每页显示 20 50 100
基于位串行卷积神经网络加速器的运动想象脑电信号识别系统
1
作者 程筱舒 王忆文 +2 位作者 娄鸿飞 丁玮然 李平 《电子科技大学学报》 北大核心 2025年第3期321-332,共12页
准确识别运动想象脑电信号是神经科学和生物医学工程领域的重要挑战。设计了基于位串行卷积神经网络加速器的脑电信号识别系统,充分利用其小体积、低能耗和高实时性的优势。从软件层面,介绍了脑电数据的预处理、特征提取及分类过程,并... 准确识别运动想象脑电信号是神经科学和生物医学工程领域的重要挑战。设计了基于位串行卷积神经网络加速器的脑电信号识别系统,充分利用其小体积、低能耗和高实时性的优势。从软件层面,介绍了脑电数据的预处理、特征提取及分类过程,并采用格拉姆角场转换将一维信号映射为二维特征图供网络处理。在硬件层面,提出了列暂存数据流和固定乘数原位串行乘法器等方法,在FPGA上实现了位串行卷积神经网络加速器的原型验证。实验表明,基于位串行LeNet-5加速器的FPGA实现对BCI竞赛Ⅳ数据集2a和2b的分类平均准确率分别达到95.68%和97.32%,kappa值分别为0.942和0.946,展现出的优异性为运动想象脑电信号识别的高效实现提供了思路。 展开更多
关键词 脑机接口 运动想象 卷积神经网络 硬件加速器 格拉姆角场
在线阅读 下载PDF
基于Zynq的卷积神经网络加速器设计
2
作者 孟凡开 张峰 +1 位作者 李淼 张多利 《合肥工业大学学报(自然科学版)》 北大核心 2025年第7期904-909,共6页
针对卷积神经网络(convolutional neural network,CNN)嵌入式部署资源开销大、运行速度慢等问题,文章提出一种以Tiny-YOLOv3作为算法模型的CNN硬件加速器。首先,基于Tiny-YOLOv3网络各层的特性和要求设计CNN加速器实现方案,将权重系数... 针对卷积神经网络(convolutional neural network,CNN)嵌入式部署资源开销大、运行速度慢等问题,文章提出一种以Tiny-YOLOv3作为算法模型的CNN硬件加速器。首先,基于Tiny-YOLOv3网络各层的特性和要求设计CNN加速器实现方案,将权重系数按位分割,面向单bit权重设计卷积加速器,通过逐位实施达到处理速度和识别率的高效平衡;然后,采用查表选择法实现卷积算子的乘加运算,设计一款6×3×16的三维加速器计算阵列,可单周期完成288个卷积窗口计算;最后,在Xilinx Zynq UltraScale+MPSoC系列芯片上对设计的CNN加速器进行性能测试。实验结果表明,该CNN加速器在200 MHz频率下具有518.4 GOPS的算力,比现有的解决方案性能提高了约63%。 展开更多
关键词 卷积神经网络(cnn) Tiny-YOLOv3网络模型 硬件加速 流水阵列 并行运算
在线阅读 下载PDF
轻量化卷积神经网络硬件加速设计及FPGA实现 被引量:1
3
作者 李珍琪 王强 +4 位作者 齐星云 赖明澈 赵言亢 陆亿行 黎渊 《计算机工程与科学》 北大核心 2025年第4期582-591,共10页
近年来,卷积神经网络CNN在计算机视觉等领域取得了显著的成效。然而,通常CNN的网络结构复杂,计算量庞大,难以在计算资源和功耗受限的便携式设备上实现。而FPGA具有较高的并行度、能效比和可重构性,已成为在便携式设备上加速CNN推理最有... 近年来,卷积神经网络CNN在计算机视觉等领域取得了显著的成效。然而,通常CNN的网络结构复杂,计算量庞大,难以在计算资源和功耗受限的便携式设备上实现。而FPGA具有较高的并行度、能效比和可重构性,已成为在便携式设备上加速CNN推理最有效的计算平台之一。设计了一种可配置为不同网络结构的卷积神经网络加速器,并从数据复用、基于行缓存的流水线优化和基于加法树的低延迟卷积技术3个方面对加速器的延迟和功耗进行了优化。以轻量化神经网络YOLOv2-tiny为例,在领航者ZYNQ-7020开发板上构建了一个实时目标检测系统。实验结果表明,整个设计的资源消耗占用为88%,功耗消耗为2.959 W,满足便携设备低硬件消耗及低功耗设计要求,在416×256的图像分辨率下,实现了3.91 fps的检测速度。 展开更多
关键词 卷积神经网络 FPGA加速 加速器 便携设备
在线阅读 下载PDF
基于片上系统的可配置卷积神经网络加速器的设计与实现 被引量:2
4
作者 张立国 杨红光 +1 位作者 金梅 申前 《高技术通讯》 CAS 北大核心 2024年第7期744-754,共11页
针对现阶段卷积神经网络(CNN)加速器的设计只能部署在单一现场可编程门阵列(FPGA)平台、不支持硬件平台升级迭代的问题,设计了一种基于片上系统(SoC)的可配置CNN加速器。该加速器具备以下2个特点:(1)在电路设计中将数据位宽、中间缓存... 针对现阶段卷积神经网络(CNN)加速器的设计只能部署在单一现场可编程门阵列(FPGA)平台、不支持硬件平台升级迭代的问题,设计了一种基于片上系统(SoC)的可配置CNN加速器。该加速器具备以下2个特点:(1)在电路设计中将数据位宽、中间缓存空间大小、乘法器阵列(MAC)并行度作为一种可选配置参数,通过调整资源使用量,使得该加速器能够适配不同FPGA硬件;(2)提出了动态数据复用的策略,通过对比数据传输过程中不同复用方式下的总参数量差异,动态地选择复用方法,以减少数据传输的等待时间,提高乘法器阵列利用率。该方案在ZCU104板卡上进行了实验,实验结果表明,当数据位宽选择8、乘法器阵列并行度选择1024、核心运算模块工作在180 MHz时,卷积运算阵列峰值吞吐量为180 GOPs,功耗为3.75 W,能效比达到47.97 GOPs·W^(-1),对于VGG16网络,其卷积层的平均乘法器阵列利用率达到84.37%。 展开更多
关键词 卷积神经网络(cnn) 现场可编程门阵列(FPGA) cnn加速器 可配置 异构加速
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别 被引量:1
5
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(cnn)
在线阅读 下载PDF
采用卷积神经网络的室内可见光定位方法
6
作者 王亮 孙海燕 《导航定位学报》 北大核心 2025年第1期128-136,共9页
针对多径反射与系统噪声导致室内可见光定位精度下降的问题,提出一种基于扩张卷积网络的室内可见光三维定位方法:基于皮尔森相关性系数对采集的接收信号强度向量进行过滤,删除系统噪声引起的非线性失真接收信号强度向量,以提高训练的神... 针对多径反射与系统噪声导致室内可见光定位精度下降的问题,提出一种基于扩张卷积网络的室内可见光三维定位方法:基于皮尔森相关性系数对采集的接收信号强度向量进行过滤,删除系统噪声引起的非线性失真接收信号强度向量,以提高训练的神经网络精度;然后,将接收信号强度向量集建立的指纹库传入神经网络进行训练,利用神经网络较强的三维空间结构表达能力拟合多径反射和系统噪声下的非线性指纹库。仿真结果表明,在7 m×7 m×3 m的室内环境下,所提方法的平均定位误差可达0.91 cm,其中90%样本的定位误差小于1.17 cm;此外,所提方法的平均定位误差较全连接神经网络和卷积神经网络可分别降低0.82 cm和0.56 cm,证明所提方法在多径反射与系统噪声环境下具有较好的定位性能。 展开更多
关键词 可见光通信系统 室内定位 物联网 卷积神经网络(cnn) 可见光定位
在线阅读 下载PDF
基于一维卷积神经网络与自编码算法的松属物种鉴别机制
7
作者 陈冬英 翁伟雄 +1 位作者 陈培亮 魏建崇 《生态学报》 北大核心 2025年第5期2401-2411,共11页
松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并... 松属植物具有重要的生态和经济价值。但松属植物的基因组庞大、分子进化慢,物种的特征相似性极高,辨别难度大。为解决传统松属物种鉴别方法存在的成本高、耗时长、准确率低、操作复杂等问题,提出了一种基于松属近红外光谱数据(NIRS)并结合一维连续型卷积神经网络(1D⁃CS⁃CNN)与自编码技术的松属物种检测机制。使用更高效率的连续型结构替代传统1D⁃CNN模型中隐含层结构,并针对松属NIRS数据适应性改进为1D⁃CS⁃CNN模型,使其可直接应用于一维NIRS数据。结合自编码器的重构误差设计一种考虑未知类别的松属物种鉴别方法,通过待测样本的自编码重构误差来解决卷积神经网络置信度过高的问题,将修正的置信度与预先设定的阈值进行比较,判断该样本是否为未知品种。实验结果表明,1D⁃CS⁃CNN训练集与测试集准确率均达到近100%,损失值收敛为0.015,改进后的1D⁃CS⁃CNN模型识别速度更快;同时,自编码模型对未知类别松属检测机制识别率为99%。实验结果证明,该模型可快速高效分类出不同松属物种,同时检测出松属新物种。 展开更多
关键词 松属物种 近红外光谱(NIRS) 自编码器 一维连续卷积神经网络(1D⁃CS⁃cnn) 鉴别
在线阅读 下载PDF
基于FPGA的卷积神经网络和视觉Transformer通用加速器 被引量:2
8
作者 李天阳 张帆 +2 位作者 王松 曹伟 陈立 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2663-2672,共10页
针对计算机视觉领域中基于现场可编程逻辑门阵列(FPGA)的传统卷积神经网(CNN)络加速器不适配视觉Transformer网络的问题,该文提出一种面向卷积神经网络和Transformer的通用FPGA加速器。首先,根据卷积和注意力机制的计算特征,提出一种面... 针对计算机视觉领域中基于现场可编程逻辑门阵列(FPGA)的传统卷积神经网(CNN)络加速器不适配视觉Transformer网络的问题,该文提出一种面向卷积神经网络和Transformer的通用FPGA加速器。首先,根据卷积和注意力机制的计算特征,提出一种面向FPGA的通用计算映射方法;其次,提出一种非线性与归一化加速单元,为计算机视觉神经网络模型中的多种非线性和归一化操作提供加速支持;然后,在Xilinx XCVU37P FPGA上实现了加速器设计。实验结果表明,所提出的非线性与归一化加速单元在提高吞吐量的同时仅造成很小的精度损失,ResNet-50和ViT-B/16在所提FPGA加速器上的性能分别达到了589.94 GOPS和564.76 GOPS。与GPU实现相比,能效比分别提高了5.19倍和7.17倍;与其他基于FPGA的大规模加速器设计相比,能效比有明显提高,同时计算效率较对比FPGA加速器提高了8.02%~177.53%。 展开更多
关键词 计算机视觉 卷积神经网络 TRANSFORMER FPGA 硬件加速器
在线阅读 下载PDF
面向多核向量加速器的卷积神经网络推理和训练向量化方法 被引量:1
9
作者 陈杰 李程 刘仲 《计算机工程与科学》 CSCD 北大核心 2024年第4期580-589,共10页
随着以卷积神经网络为代表的深度学习得到广泛应用,神经网络模型中的计算量也急速增长,推动了深度学习加速器的发展。如何针对加速器硬件的体系结构特性进行加速和优化神经网络模型的性能成为研究热点。针对自主设计的多核向量加速器FT-... 随着以卷积神经网络为代表的深度学习得到广泛应用,神经网络模型中的计算量也急速增长,推动了深度学习加速器的发展。如何针对加速器硬件的体系结构特性进行加速和优化神经网络模型的性能成为研究热点。针对自主设计的多核向量加速器FT-M7004上的VGG网络模型推理和训练算法,分别提出了卷积、池化和全连接等核心算子的向量化映射方法,采用SIMD向量化、DMA双缓冲传输和权值共享等优化策略,充分发挥了向量加速器的体系结构优势,取得了较高的计算效率。实验结果表明,在FT-M7004平台上,卷积层推理和训练的平均计算效率分别达到了86.62%和69.63%;全连接层推理和训练的平均计算效率分别达到了93.17%和81.98%;VGG网络模型在FT-M7004上的推理计算效率超过GPU平台20%以上。 展开更多
关键词 多核向量加速器 卷积神经网络 推理算法 训练算法
在线阅读 下载PDF
面向稀疏卷积神经网络的CGRA加速器研究 被引量:1
10
作者 谭龙 严明玉 +3 位作者 吴欣欣 李文明 吴海彬 范东睿 《高技术通讯》 CAS 北大核心 2024年第2期173-186,共14页
本文针对规模日益增长和演变迅速的稀疏卷积神经网络(CNN)应用,提出一款高能效且灵活的加速结构DyCNN来提升其性能和能效。DyCNN基于兼具灵活性和高能效的粗粒度可重构架构(CGRA)设计,可以利用其指令的高并行性来高效支持CNN的操作。Dy... 本文针对规模日益增长和演变迅速的稀疏卷积神经网络(CNN)应用,提出一款高能效且灵活的加速结构DyCNN来提升其性能和能效。DyCNN基于兼具灵活性和高能效的粗粒度可重构架构(CGRA)设计,可以利用其指令的高并行性来高效支持CNN的操作。DyCNN使用基于数据感知的指令动态过滤机制来滤除各计算单元中由于稀疏CNN中权值静态稀疏性和激活值动态稀疏性产生的大量无效计算和访存指令,使它们能像执行稠密网络一样高效复用一组指令。此外DyCNN利用基于负载感知的动静结合负载调度策略解决了稀疏导致的负载不均衡问题。实验结果表明,DyCNN运行稀疏CNN与运行密集CNN相比实现了平均1.69倍性能提升和3.04倍能效提升,比先进的GPU(cuSPARSE)和Cambricon-X上的解决方案分别实现了2.78倍、1.48倍性能提升和35.62倍、1.17倍能效提升。 展开更多
关键词 稀疏卷积神经网络(cnn) 专用加速结构 粗粒度可重构架构(CGRA) 动态指令过滤 动态负载调度
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:2
11
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(cnn) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
基于忆阻卷积神经网络的PCB缺陷检测模型
12
作者 李可 李锦屏 廉敬 《半导体技术》 北大核心 2025年第11期1183-1194,共12页
印刷电路板(PCB)作为电子设备的核心组件,存在图像像素分辨率低、尺度差异显著及背景对比度低等缺陷,给检测工作带来了严峻的挑战。为实现高效、轻量化的缺陷检测,提出一种基于忆阻卷积神经网络(CNN)的PCB缺陷检测模型。该模型采用轻量... 印刷电路板(PCB)作为电子设备的核心组件,存在图像像素分辨率低、尺度差异显著及背景对比度低等缺陷,给检测工作带来了严峻的挑战。为实现高效、轻量化的缺陷检测,提出一种基于忆阻卷积神经网络(CNN)的PCB缺陷检测模型。该模型采用轻量化卷积优化的混合图特征网络(HGNet)v2替代YOLOv8n的主干网络,引入轻量级跨尺度特征融合模块(CCFM),以增强尺度适应性,并通过动态检测头(DynamicHead)模块融合尺度、空间与任务感知注意力机制,提升检测性能。基于忆阻器神经网络模拟(MemTorch)平台构建忆阻器交叉阵列(MCA)映射方案,将CNN权重高精度映射至电压阈值自适应忆阻器(VTEAM)交叉结构中,实现存算一体的推理加速。在北京大学PKU-Market-PCB数据集上的实验结果显示,该模型精确率(P)为98.4%、多类别平均精度均值(mAP@0.5)为97.3%、召回率(R)为95.0%,模型参数量(Params)较YOLOv8n的减少了约34.2%。研究结果表明,该模型在检测精度与硬件部署效率方面综合优势显著,在实时PCB缺陷检测中表现出优异的性能与良好的应用前景。 展开更多
关键词 YOLO 卷积神经网络(cnn) 忆阻器 缺陷检测 存算一体
在线阅读 下载PDF
基于FPGA的稀疏卷积神经网络加速器设计 被引量:1
13
作者 李宁 肖昊 《电子测量技术》 北大核心 2024年第5期1-8,共8页
剪枝是一种减少卷积神经网络权重和计算量的有效方法,为CNN的高效部署提供了解决方案。但是,剪枝后的稀疏CNN中权重的不规则分布使硬件计算单元之间的计算负载各不相同,降低了硬件的计算效率。文章提出一种细粒度的CNN模型剪枝方法,该... 剪枝是一种减少卷积神经网络权重和计算量的有效方法,为CNN的高效部署提供了解决方案。但是,剪枝后的稀疏CNN中权重的不规则分布使硬件计算单元之间的计算负载各不相同,降低了硬件的计算效率。文章提出一种细粒度的CNN模型剪枝方法,该方法根据硬件加速器的架构将整体权重分成若干个局部权重组,并分别对每一组局部权重进行独立剪枝,得到的稀疏CNN在加速器上实现了计算负载平衡。此外,设计一种具有高效PE结构和稀疏度可配置的稀疏CNN加速器并在FPGA上实现,该加速器的高效PE结构提升了乘法器的吞吐率,同时可配置性使其可灵活地适应不同稀疏度的CNN计算。实验结果表明,提出的剪枝算法可将CNN的权重参数减少50%~70%,同时精度损失不到3%。相比于密集型加速器,提出的加速器最高可实现3.65倍的加速比;与其他的稀疏型加速器研究相比,本研究的加速器在硬件效率上提升28%~167%。 展开更多
关键词 卷积神经网络 硬件加速器 稀疏计算 FPGA
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
14
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks cnn) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于S谱能量曲线与卷积神经网络的天然地震与爆破事件分类识别
15
作者 孟娟 李亚南 高强 《地震学报》 北大核心 2025年第2期232-241,共10页
以震级为ML1.3—3.0的1万2936条人工爆破微震记录和1万3215条天然微震波形为研究对象,对其原始地震波形进行1—30 Hz带通滤波以去除长周期干扰,并基于长短时窗均值比(STA/LTA)算法进行P波识别与筛选。对处理后的地震波形数据进行S变换,... 以震级为ML1.3—3.0的1万2936条人工爆破微震记录和1万3215条天然微震波形为研究对象,对其原始地震波形进行1—30 Hz带通滤波以去除长周期干扰,并基于长短时窗均值比(STA/LTA)算法进行P波识别与筛选。对处理后的地震波形数据进行S变换,获取其S谱能量曲线,然后将S谱能量曲线图转换为32×32像素的灰度特征图,并将其作为卷积神经网络的输入进行训练,基于训练好的模型进行10折交叉测试验证。结果显示地震与爆破事件的分类识别准确率高达97.80%,表明利用S谱能量曲线能较好地识别天然地震与人工爆破。 展开更多
关键词 人工爆破 天然地震 卷积神经网络(cnn) S变换 分类识别
在线阅读 下载PDF
基于卷积神经网络与机器视觉的纸张尘埃度测量系统的设计与应用研究
16
作者 李欢 李亮 《中国造纸》 北大核心 2025年第8期157-163,共7页
本研究基于卷积神经网络(CNN)与机器视觉,设计了纸张尘埃度测量系统。该系统基于模型训练和检验2个模块构建,使用高分辨率扫描仪获取尘埃数据集和纸张样品图片,使用不同优化算法训练分类模型,并采用对角线测量算法,制作标准尘埃像素表... 本研究基于卷积神经网络(CNN)与机器视觉,设计了纸张尘埃度测量系统。该系统基于模型训练和检验2个模块构建,使用高分辨率扫描仪获取尘埃数据集和纸张样品图片,使用不同优化算法训练分类模型,并采用对角线测量算法,制作标准尘埃像素表用于定级和分类统计,进而计算尘埃度。结果表明,该系统的精度可达0.007 mm^(2),优于GB/T 1541—2013《纸和纸板尘埃度的测定》要求,分类准确度达95.89%,能够实现多类纸品的全量程测量,单样本重复性测量误差为0,相比人工检测系统单样本检测用时缩短了约97%,实现了纸类产品尘埃度的高效、精准检测。 展开更多
关键词 纸张尘埃度 卷积神经网络(cnn) 机器视觉 图像处理
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
17
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(cnn) 双向长短期记忆网络(BiLSTM) 深度学习
在线阅读 下载PDF
FPGA平台上动态硬件重构的Winograd神经网络加速器 被引量:1
18
作者 梅冰笑 滕文彬 +3 位作者 张弛 王文浩 李富强 苑福利 《计算机工程与应用》 CSCD 北大核心 2024年第22期323-334,共12页
为解决卷积神经网络在FPGA平台上进行硬件加速时存在的资源利用率低和资源受限问题,提出了一种基于FPGA动态部分重构技术和Winograd快速卷积的卷积神经网络加速器。该加速器通过运行时硬件重构对FPGA片上资源进行时分复用,采用流水线方... 为解决卷积神经网络在FPGA平台上进行硬件加速时存在的资源利用率低和资源受限问题,提出了一种基于FPGA动态部分重构技术和Winograd快速卷积的卷积神经网络加速器。该加速器通过运行时硬件重构对FPGA片上资源进行时分复用,采用流水线方式动态地将各个计算流水段配置到FPGA,各个流水段所对应的卷积计算核心使用Winograd算法进行定制优化,以在解决资源受限问题的同时最大程度地提升计算资源利用效率。针对该加速器架构,进一步构建了组合优化模型,用于搜索在特定FPGA硬件平台上部署特定网络模型的最优并行策略,并使用遗传算法进行设计空间求解。基于Xilinx VC709 FPGA平台对VGG-16网络模型进行部署和分析,综合仿真结果表明,所提出的设计方法能够在资源有限的FPGA上自适应地实现大型神经网络模型,加速器整体性能可以达到1078.3 GOPS,较以往加速器的性能和计算资源利用效率可以分别提升2.2倍和3.62倍。 展开更多
关键词 卷积神经网络 动态部分硬件重构 现场可编程门阵列(FPGA) 硬件加速器 Winograd快速卷积
在线阅读 下载PDF
基于FPGA的卷积神经网络加速器 被引量:37
19
作者 余子健 马德 +1 位作者 严晓浪 沈君成 《计算机工程》 CAS CSCD 北大核心 2017年第1期109-114,119,共7页
现有软件实现方案难以满足卷积神经网络对运算性能与功耗的要求。为此,设计一种基于现场可编程门阵列(FPGA)的卷积神经网络加速器。在粗粒度并行层面对卷积运算单元进行并行化加速,并使用流水线实现完整单层运算过程,使单个时钟周期能... 现有软件实现方案难以满足卷积神经网络对运算性能与功耗的要求。为此,设计一种基于现场可编程门阵列(FPGA)的卷积神经网络加速器。在粗粒度并行层面对卷积运算单元进行并行化加速,并使用流水线实现完整单层运算过程,使单个时钟周期能够完成20次乘累加,从而提升运算效率。针对MNIST手写数字字符识别的实验结果表明,在75 MHz的工作频率下,该加速器可使FPGA峰值运算速度达到0.676 GMAC/s,相较通用CPU平台实现4倍加速,而功耗仅为其2.68%。 展开更多
关键词 卷积神经网络 现场可编程门阵列 加速器 流水线 并行化
在线阅读 下载PDF
基于卷积神经网络与Transformer的电能质量扰动分类方法 被引量:6
20
作者 金星 周凯翔 +2 位作者 于海洲 王盛慧 伍孟海 《科学技术与工程》 北大核心 2024年第16期6726-6733,共8页
复杂电能质量扰动(power quality disturbances, PQD)的智能分类对于智能电网发展具有重要意义。扰动特征的提取与定位、模式识别与分类是电能质量扰动分类方法研究的难点。采用深度学习算法,将具有关注全局信息的Transformer与善于提... 复杂电能质量扰动(power quality disturbances, PQD)的智能分类对于智能电网发展具有重要意义。扰动特征的提取与定位、模式识别与分类是电能质量扰动分类方法研究的难点。采用深度学习算法,将具有关注全局信息的Transformer与善于提取局部特征的卷积神经网络相融合,提出一种基于卷积神经网络(convolutional neural network, CNN)与Transformer的电能质量扰动分类方法,即CTranCBA。这种双深度学习模型分类方法主要是通过一维卷积神经网络提取电能质量扰动信号特征,利用Transformer自注意力机制引导模型关注序列中不同位置间的依赖关系,实现对扰动信号局部特征与全局特征的互补,克服了因感受野的限制而带来的识别不清、分类不准等问题。使用23种不同电能质量扰动信号,将CTranCBA与Deep-CNN、CNN-LSTM、CNN-CBAM方法进行比较。结果表明:该方法在分类准确率和抗噪性方面表现优异,可为电能质量扰动智能分类提供一种新的方法。 展开更多
关键词 电能质量扰动(PQD) 卷积神经网络(cnn) Transformer模型 卷积注意力机制
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部