期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进卷积玻尔兹曼机的图像特征深度提取 被引量:11
1
作者 刘凯 张立民 范晓磊 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第5期155-159,共5页
针对卷积深度和信念网络存在计算复杂度高和训练缓慢的问题,提出卷积深度玻尔兹曼机用于图像特征提取.针对卷积受限玻尔兹曼机进行改进,提出最大化图像中间区域概率的训练目标函数,并引入性能较好的交叉熵稀疏惩罚因子和dropout训练方法... 针对卷积深度和信念网络存在计算复杂度高和训练缓慢的问题,提出卷积深度玻尔兹曼机用于图像特征提取.针对卷积受限玻尔兹曼机进行改进,提出最大化图像中间区域概率的训练目标函数,并引入性能较好的交叉熵稀疏惩罚因子和dropout训练方法.设计卷积深度玻尔兹曼机结构,提出均值聚合机制,将聚合层内点的值定义为block中各点激活概率均值,对层间关联进行简化,将聚合层内各面直接叠加以供高层CRBM提取特征.通过在MNIST手写数字识别集上的实验结果证明,采用新模型提取的图像特征分类准确率提高0.5%、训练时间减少50%,且达到了目前MNIST数据集的最佳水平. 展开更多
关键词 深度学习 图像特征提取 卷积受限玻尔兹曼 卷积深度玻尔兹曼机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部