期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
基于DenseNet和卷积注意力模块的高精度手势识别 被引量:5
1
作者 赵雅琴 宋雨晴 +3 位作者 吴晗 何胜阳 刘璞秋 吴龙文 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期967-976,共10页
非接触的手势识别是一种新型人机交互方式,在增强现实(AR)/虚拟现实(VR)、智能家居、智能医疗等方面有着广阔的应用前景,近年来成为一个研究热点。由于需要利用毫米波雷达进行更精确的微动手势识别,该文提出一种新型的基于MIMO毫米波雷... 非接触的手势识别是一种新型人机交互方式,在增强现实(AR)/虚拟现实(VR)、智能家居、智能医疗等方面有着广阔的应用前景,近年来成为一个研究热点。由于需要利用毫米波雷达进行更精确的微动手势识别,该文提出一种新型的基于MIMO毫米波雷达的微动手势识别方法。采用4片AWR1243雷达板级联而成的毫米波级联(MMWCAS)雷达采集手势回波,对手势回波进行时频分析,基于距离-多普勒(RD)图和3D点云检测出人手目标。通过数据预处理,提取手势目标的距离-时间谱图(RTM)、多普勒-时间谱图(DTM)、方位角-时间谱图(ATM)和俯仰角-时间谱图(ETM),更加全面地表征手势的运动特征,并形成混合特征谱图(FTM),对12种微动手势进行识别。设计了基于DenseNet和卷积注意力模块的手势识别网络,将混合特征谱图作为网络的输入,创新性地融合了卷积注意力模块(CBAM),实验表明,识别准确率达到99.03%,且该网络将注意力放在手势动作的前半段,实现了高精度的手势识别。 展开更多
关键词 手势识别 毫米波雷达 卷积神经网络 卷积注意力模块
在线阅读 下载PDF
基于Ghost卷积与自适应注意力的点云分类 被引量:1
2
作者 舒密 王占刚 《现代电子技术》 北大核心 2025年第6期106-112,共7页
点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,... 点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,提出一种基于点云Transformer的轻量级特征增强融合分类网络EFF-LPCT。EFF-LPCT使用一维化Ghost卷积对原始网络进行重构,以降低计算复杂度和内存要求;引入自适应支路权重,以实现注意力层级间的多尺度特征融合;利用多个通道注意力模块增强特征的通道交互信息,以提高模型分类效果。在ModelNet40数据集进行的实验结果表明,EFF-LPCT在达到93.3%高精度的同时,相较于点云Transformer减少了1.11 GFLOPs的浮点计算量和0.86×10^(6)的参数量。 展开更多
关键词 点云分类 Transformer网络 Ghost卷积 特征增强融合模块 ECA通道注意力 特征学习
在线阅读 下载PDF
基于多层次瓶颈注意力模块的颅骨到面皮的生成方法
3
作者 王洁 姜文凯 +3 位作者 蒋佳琪 梁增磊 刘晓宁 耿国华 《西北大学学报(自然科学版)》 北大核心 2025年第1期201-212,共12页
从未知颅骨恢复其生前面貌是考古学、法医学和刑侦学重要的研究方向。现有的计算机三维辅助复原过程繁琐,耗时长,该研究针对现有模型在颅骨到面皮(不含纹理、头发等的面貌)图像生成上存在失真、扭曲、不平滑等现象,提出一种结合生成对... 从未知颅骨恢复其生前面貌是考古学、法医学和刑侦学重要的研究方向。现有的计算机三维辅助复原过程繁琐,耗时长,该研究针对现有模型在颅骨到面皮(不含纹理、头发等的面貌)图像生成上存在失真、扭曲、不平滑等现象,提出一种结合生成对抗网络和多层次瓶颈注意力模块的颅骨到面皮图像生成方法。该方法的生成器由6层AdaResBlock和瓶颈注意力模块组成,从通道和空间两个维度引导生成器关注更重要的区域,并根据特征自适应地调整归一化方式。同时,针对生成器模型较大的问题,引入蓝图可分离卷积减小其体积。此外,将判别器分为两部分,前几层被用来进行编码,取消传统网络中的单独编码器模块,使模型更紧凑;后几层则采用多尺度判别策略,从不同层级对图像进行分类判别,增强其准确性。实验结果表明,在颅骨到面皮图像生成任务上,该方法生成的面皮图像质量高于现有的其他方法,在视觉质量和图像质量上都取得了最高的分数,复原效果更加真实,图像定量评价指标PSNR、SSIM平均提升1.115,0.017,LPIPS平均降低0.026,面皮平均相似度为0.855。 展开更多
关键词 颅面生成 生成对抗网络 图像转换 瓶颈注意力模块 蓝图可分离卷积
在线阅读 下载PDF
基于解耦注意力与幻影卷积的轻量级人体姿态估计 被引量:1
4
作者 陈俊颖 郭士杰 陈玲玲 《计算机应用》 北大核心 2025年第1期223-233,共11页
随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影... 随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影卷积的轻量级人体姿态估计网络(DGLNet)。具体来说,DGLNet以小型高分辨率网络(Small HRNet)模型为基础架构,通过引入解耦注意力机制构建DFDbottleneck模块;采用shuffleblock的结构对基础模块进行重新设计,即用轻量级幻影卷积替代计算量大的点卷积,并利用解耦注意力机制增强模块性能,从而构建DGBblock模块;此外,用幻影卷积和解耦注意力重新构建的深度可分离卷积模块来替代原过渡层模块,从而构建GSCtransition模块,进一步减少计算量并增强特征交互性和提高性能。在COCO验证集上的实验结果显示,DGLNet优于轻量级高分辨率网络(Lite-HRNet),在计算量和参数量不增加的情况下,最高精度达到了71.9%;与常见的轻量级姿态估计网络MobileNetV2和ShuffleNetV2相比,DGLNet在仅使用21.2%和25.0%的计算量情况下分别实现了4.6和8.3个百分点的精度提升;在AP^(50)的评价标准上,DGLNet超过了大型高分辨率网络(HRNet)的同时计算量和参数量远小于HRNet。 展开更多
关键词 人体姿态估计 轻量级网络 注意力机制 幻影卷积 深度可分离卷积模块
在线阅读 下载PDF
基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型
5
作者 林顺富 李毅 +2 位作者 沈运帷 林屹峰 李东东 《电力自动化设备》 EI CSCD 北大核心 2024年第3期127-133,共7页
为了进一步提高低频居民负荷分解模型的分解精度与泛化能力,提出一种基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型,该模型能够深度解析单一电器的功率曲线。基于全卷积去噪自编码器分别构建主回归子任务网络和... 为了进一步提高低频居民负荷分解模型的分解精度与泛化能力,提出一种基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型,该模型能够深度解析单一电器的功率曲线。基于全卷积去噪自编码器分别构建主回归子任务网络和辅助分类子任务网络;在子任务网络中,通过引入卷积块注意力模块自适应分配特征注意力权重,以减小不重要因素在模型训练过程中的影响;将辅助分类子任务网络的输出作为主回归子任务网络输出的门控单元,实现最终的负荷分解。基于公开数据集的算例结果表明,所提负荷分解模型比现有负荷分解模型具有更优的分解精度和泛化能力。 展开更多
关键词 负荷分解 卷积去噪自编码器 注意力模块 子任务网络 门控单元
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
6
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
基于卷积注意力机制的阀门内漏声发射识别方法 被引量:1
7
作者 黄鑫 屈文忠 肖黎 《振动与冲击》 EI CSCD 北大核心 2024年第9期105-114,共10页
阀门结构作为核电厂的关键设备部件之一,因长期处于高温高压环境下,其闸板或阀瓣易发生热变形或磨损导致密封不良,进而引发内漏事故。实时在线识别阀门的内漏状态,对提升核电机组热效率、提高阀门可靠性具有重要意义。因实际工业现场的... 阀门结构作为核电厂的关键设备部件之一,因长期处于高温高压环境下,其闸板或阀瓣易发生热变形或磨损导致密封不良,进而引发内漏事故。实时在线识别阀门的内漏状态,对提升核电机组热效率、提高阀门可靠性具有重要意义。因实际工业现场的基底噪声极易掩盖阀门内漏的声发射信号,进而造成阀门内漏状态的误判。为实现阀门内漏状态的快速准确识别,搭建了阀门内漏检测试验台架,开发了基于声发射方法的阀门内漏检测分析系统,将卷积注意力机制引入卷积神经网络中,实现高效快速地识别阀门内漏状态。结果表明,基于阀门内漏的声发射信号频域数据,利用卷积注意力机制神经网络能有效准确地识别阀门内漏状态,在内漏率为26 L/h时,识别准确率高达98%,并且具有较好的可靠性和鲁棒性。 展开更多
关键词 阀门结构 内漏 声发射 卷积注意力模块 卷积神经网络
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
8
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
基于特征相似性和特征规范化的注意力模块 被引量:1
9
作者 杜启亮 汪益民 田联房 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期62-71,共10页
近年来,注意力机制在图像分类、目标检测和语义分割等领域取得了巨大成功,但现有的注意力机制大多只能在通道或空间维度上实现特征融合,这极大限制了其在通道和空间维度上变化的灵活性,导致无法充分利用特征信息。为此,文中提出一种基... 近年来,注意力机制在图像分类、目标检测和语义分割等领域取得了巨大成功,但现有的注意力机制大多只能在通道或空间维度上实现特征融合,这极大限制了其在通道和空间维度上变化的灵活性,导致无法充分利用特征信息。为此,文中提出一种基于特征相似性和特征规范化的、可同时利用特征图各维度信息的卷积神经网络注意力模块FSNAM。该模块由特征相似性模块(FSM)和特征规范化模块(FNM)两部分组成,FSM利用输入特征图的通道特征信息和局部空间特征信息生成一个二维的特征相似性权重图;FNM利用输入特征图的全局空间特征信息生成一个三维的特征规范化权重图;两个模块生成的权重图融合在一起,生成一个三维的注意力权重图,以此实现通道特征信息和空间特征信息的融合。为证明FSNAM的可行性和有效性,进行了消融实验,结果表明:在图像分类任务方面,FSNAM模块对分类网络在CIFAR数据集上的性能提升明显优于其他主流注意力模块;在目标检测任务方面,使用FSNAM模块的目标检测网络对VOC数据集中的小目标和中等大小目标的检测准确率分别提高了3.9和1.2个百分点;在语义分割任务方面,使用FSNAM模块可以提高HRNet模型的性能,在SBD数据集上模型的平均像素准确率提高了0.58个百分点。 展开更多
关键词 卷积神经网络 计算机视觉 特征相似性 特征规范化 注意力模块
在线阅读 下载PDF
域对抗图卷积注意力变工况故障研究
10
作者 邢如意 尹洪申 《组合机床与自动化加工技术》 北大核心 2024年第3期172-176,共5页
针对滚动轴承在变工况环境中网络特征提取能力不足的问题,提出了一种域对抗图卷积注意力迁移学习的故障诊断方法(DAGRESL)。首先,通过残差神经网络(residual network, Resnet)提取输入的轴承故障信息特征并通过Simam注意力模块增强Resne... 针对滚动轴承在变工况环境中网络特征提取能力不足的问题,提出了一种域对抗图卷积注意力迁移学习的故障诊断方法(DAGRESL)。首先,通过残差神经网络(residual network, Resnet)提取输入的轴承故障信息特征并通过Simam注意力模块增强Resnet的特征表达能力;其次,利用图生成层学习Resnet的特征数据并挖掘样本结构特征之间的关系来构造实例图;然后,利用图卷积网络(graph convolutional network, GCN)对实例图进行建模;最后,利用域判别器和局部最大平均差异(local maximum mean discrepancy, LMMD)对齐子域和全局域之间的分布并通过标签分类网络完成故障分类。通过在SQI-MFS轴承数据集的实验结果证明了所提出的DAGRESL模型能够精准地区分变工况轴承故障类型,有效解决了滚动轴承在变工况环境中网络特征提取能力不足的问题。 展开更多
关键词 故障诊断 变工况 卷积注意力模块 卷积
在线阅读 下载PDF
基于卷积注意力模块的端到端遥感图像分类 被引量:10
11
作者 徐风 苗哲 业巧林 《林业工程学报》 CSCD 北大核心 2020年第4期133-138,共6页
随着图像信息处理技术的发展,大量由各式飞行器对地观测所采集的遥感图像数据被应用于各领域实际生产生活中。传统遥感图像分类方法包含一系列复杂的处理流程,在处理效率和效果上已经难以满足当下的需求。随着人工智能相关技术的发展,... 随着图像信息处理技术的发展,大量由各式飞行器对地观测所采集的遥感图像数据被应用于各领域实际生产生活中。传统遥感图像分类方法包含一系列复杂的处理流程,在处理效率和效果上已经难以满足当下的需求。随着人工智能相关技术的发展,基于卷积神经网络的遥感图像分类方法开始占据主导地位。为减少算法流程中的复杂处理与提高分类的精度,笔者提出一种基于卷积注意力模块的端到端遥感图像分类框架,该框架采用卷积神经网络框架ResNet101作为整个框架的主干网络。在ResNet101网络4个阶段的卷积模块之间嵌入卷积注意力模块,使得模型关注于最具有类别区分度的区域,从而得到更好的分类结果。在模型训练阶段,采用开源的深度学习开源框架Pytorch对训练数据进行在线增广处理,对训练数据进行随机角度旋转,防止训练过程中发生过拟合现象。本研究基于PatternNet与NWPU-RESISC45两个公开数据集,并仅划分少量数据用于模型训练。结果表明:相比已有的方法,本研究提出的框架能够在GPU加速的环境中,以更高的精度分类遥感图像,满足了实时处理的需求,且支持端到端对遥感图像进行分类,不需要复杂的处理流程。 展开更多
关键词 卷积神经网络 遥感图像 卷积注意力模块 图像分类
在线阅读 下载PDF
基于多尺度注意力UNet++的地震层位识别方法
12
作者 杨润湉 马强 +3 位作者 王志宝 李菲 吴钧 王如意 《石油物探》 北大核心 2025年第2期315-327,共13页
现有基于深度学习的层位识别方法通常在地震振幅信号特征方面进行处理,而地层之间上、下位置的空间关系、不同尺度特征未得到充分关注,导致普通深度学习网络在识别多个地震层位时容易产生层位识别结果连续性不强和错层等问题。为了充分... 现有基于深度学习的层位识别方法通常在地震振幅信号特征方面进行处理,而地层之间上、下位置的空间关系、不同尺度特征未得到充分关注,导致普通深度学习网络在识别多个地震层位时容易产生层位识别结果连续性不强和错层等问题。为了充分利用层位之间的空间位置关系及多尺度特征,使用MultiResBlock多尺度残差模块、CBAM注意力与UNet++,提出了基于多尺度注意力UNet++的层位识别方法 (MR_CBAM_UNet++)。该方法利用MultiResBlock提取更多层位尺度特征,采用CBAM注意力模块以减少非目标层的振幅信号干扰,利用Focal Loss与Dice Loss组成的联合损失函数对网络进行训练。最后,加入唯一性约束对模型识别结果优化得到层位识别结果。在实际地震数据上的评价结果显示,MR_CBAM_UNet++模型相比于传统模型,对非层位信息的抑制能力和复杂地势下层位的识别能力均有很大提升。在测试集上,层位识别结果的准确率达到了86.19%,有效缓解了层位解释连续性不强和错层等问题,唯一性约束也使层位识别结果更贴近实际。 展开更多
关键词 地震层位解释 UNet++ cbam注意力模块 MultiResBlock多尺度残差模块 联合损失函数
在线阅读 下载PDF
基于时空注意力卷积模型的超短期风电功率预测 被引量:4
13
作者 吕云龙 胡琴 +1 位作者 熊俊杰 龙敦华 《电网技术》 EI CSCD 北大核心 2024年第5期2064-2073,I0068,I0069-I0071,共14页
随着风电利用率的不断提高,风电输出功率的准确预测对电力系统的调度和稳定运行具有重要意义。然而,风力发电的随机性和波动性容易影响功率预测结果的准确性。该文提出一种基于时空相关性的风电功率预测方法,由时空注意力模块和时空卷... 随着风电利用率的不断提高,风电输出功率的准确预测对电力系统的调度和稳定运行具有重要意义。然而,风力发电的随机性和波动性容易影响功率预测结果的准确性。该文提出一种基于时空相关性的风电功率预测方法,由时空注意力模块和时空卷积模块组成。首先,利用空间注意力层和时间注意力层对不同风机之间的时空相关性进行聚合提取。其次,通过空间卷积层和时间卷积层有效捕捉风电数据之间的空间特征和时间演变规律。最后,采用中国两处实际风电场运行数据对预测方法进行实验验证。结果表明,相比于传统预测方法,时空注意力和时空卷积的融合使该文所提出的预测方法具有较高的预测精度和较好的稳定性。 展开更多
关键词 风电功率预测 时空相关性 图神经网络 时空注意力模块 时空卷积模块
在线阅读 下载PDF
基于卷积—反残差和组合注意力机制的航天器多余物检测 被引量:1
14
作者 花诗燕 李大伟 +1 位作者 贾书一 汪俊 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期53-66,共14页
航天器密闭电子设备内腔多余物给航天器飞行安全带来了巨大隐患。由于多余物体积小、与设备内常规组件形态结构相似且易被其他组件遮挡,采用现有的方法对其进行检测时误检、漏检频发。为解决上述问题,提出一种基于卷积—反残差和组合注... 航天器密闭电子设备内腔多余物给航天器飞行安全带来了巨大隐患。由于多余物体积小、与设备内常规组件形态结构相似且易被其他组件遮挡,采用现有的方法对其进行检测时误检、漏检频发。为解决上述问题,提出一种基于卷积—反残差和组合注意力机制的航天器密闭电子设备多余物检测网络RPDN。首先,网络通过构建卷积—反残差模块,保证了多余物细粒度特征的完整性;其次,设计组合注意力机制,增强了多余物特征的表征能力;最后,结合多尺度特征融合模块与目标检测层从多维度进行目标预测。实验结果表明RPDN在各项评价指标上均取得了良好的效果,mAP达到92.16%,检测效率达到了13FPS,实现了航天器密闭电子设备内腔多余物高效、精准检测。 展开更多
关键词 航天器 密闭电子设备 多余物检测 卷积—反残差模块 组合注意力机制
在线阅读 下载PDF
基于边卷积与瓶颈注意力的点云三维目标检测 被引量:1
15
作者 简英杰 杨文霞 +1 位作者 方玺 韩欢 《计算机科学》 CSCD 北大核心 2024年第5期162-171,共10页
点云数据的高度稀疏特性使当前大部分基于点云的三维目标检测算法对点云的局部特征学习不足,且点云数据包含的部分无效信息会干扰目标检测。针对以上问题,提出了一种基于边卷积与瓶颈注意力的三维目标检测模型。首先,构建多层边卷积(Edg... 点云数据的高度稀疏特性使当前大部分基于点云的三维目标检测算法对点云的局部特征学习不足,且点云数据包含的部分无效信息会干扰目标检测。针对以上问题,提出了一种基于边卷积与瓶颈注意力的三维目标检测模型。首先,构建多层边卷积(Edge Convolution,EdgeConv),针对点云中的每个点,通过寻找特征空间上与其最接近的K个点,以构建K-近邻图结构,并学习点云的多尺度局部特征;其次,设计适用于三维点云数据的瓶颈注意力模块(Bottleneck Attention Module,BAM),每个BAM包括一个通道注意力模块和一个空间注意力模块,用于增强对目标检测有价值的点云信息,提升网络模型的表征能力。网络以VoteNet为基线,多层边卷积和BAM模块依次加入PointNet++网络和投票模块之间。模型在SUN RGB-D和ScanNetV2公共数据集上进行实验,并与13个当前先进的三维目标检测算法进行对比。实验结果表明,对于SUN RGB-D数据集,所提模型在交并比(Intersection over Union,IoU)为0.5时的平均精确率mAP@0.5达到了最高,并在床、椅子、办公桌等6个对象类别(共10个类别)达到最优准确率(AP@0.25);对于ScanNetV2数据集,模型的mAP@0.25和mAP@0.5均达到最优,并在椅子、沙发、照片等10个对象类别(共18个类别)达到了最优准确率(AP@0.25)。与基线VoteNet相比,所提模型在两个数据集上的mAP@0.25分别提升了6.5%和12.9%,消融实验证明了所加入的边卷积模块和瓶颈注意力模块的有效性。 展开更多
关键词 三维目标检测 点云 卷积 瓶颈注意力模块 VoteNet SUN RGB-D数据集 ScanNetV2数据集
在线阅读 下载PDF
基于注意力模块的移动设备多场景持续身份认证 被引量:3
16
作者 金瑜瑶 张晓梅 王亚杰 《计算机工程与应用》 CSCD 北大核心 2024年第3期280-291,共12页
针对用户与移动设备交互时会产生场景变化,现有工作中只能采集特定的单一场景特征,无法实现多场景转换认证,并且身份认证准确率较低的问题,提出了一种基于移动模式的、注意力模块和卷积神经网络融合(CNNSACA)的多场景持续认证方案。在... 针对用户与移动设备交互时会产生场景变化,现有工作中只能采集特定的单一场景特征,无法实现多场景转换认证,并且身份认证准确率较低的问题,提出了一种基于移动模式的、注意力模块和卷积神经网络融合(CNNSACA)的多场景持续认证方案。在不限使用场景和操作的情况下,提取用户与移动设备交互时的移动模式(movement patterns,MP)特征,捕捉在动态和静态场景下产生的手部微运动,从而实现多场景的身份认证。设计并使用了一个包括五层卷积层结构的卷积神经网络,在第一层卷积后按序通过改进的空间和通道注意力子模块,再在多层卷积后进行反序分配权重,从两个维度来对通过卷积后所表征的MP特征分配双重注意力权重,增强关键特征表达。利用公开数据集验证所提方案在多场景身份认证方面的有效性和可行性。实验结果表明,所提出的基于移动模式的深度学习模型可以较好地解决身份认证场景单一的局限性,多场景的身份认证的准确率达到99.6%;同时,所提出的CNN-SACA模型与单独的CNN模型相比准确率提高了1.5个百分点,有效改善多场景下的移动设备身份认证能力。 展开更多
关键词 卷积神经网络 注意力模块 多场景 持续身份认证 移动设备
在线阅读 下载PDF
融合监督注意力模块和跨阶段特征融合的图像修复改进网络 被引量:2
17
作者 黄巧玲 郑伯川 +1 位作者 丁梓成 吴泽东 《计算机应用》 CSCD 北大核心 2024年第2期572-579,共8页
非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两... 非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两阶段网络模型上,引入了SAM与CSFF模块。SAM通过提供真实图像监督信号,监督上阶段输出特征,确保传入下阶段特征信息的有效性。CSFF将上阶段编码器-解码器的特征融合后送入下阶段的编码器,以弥补上阶段修复中特征信息的损失。实验结果表明,在缺失区域占比为1%~10%时,相较于基线模型Gconv,Gconv_CS在CelebA-HQ数据集上峰值信噪比(PSNR)和结构相似性指数(SSIM)分别提高了1.5%和0.5%,Fréchet起始距离(FID)和L1损失分别降低了21.8%、14.8%;在Place2数据集上,前2个指标分别提高了26.7%和0.8%,后2个指标分别降低了7.9%、37.9%。将Gconv_CS用于去除大熊猫面部遮挡物时,取得了较好的修复视觉效果。 展开更多
关键词 图像修复 两阶段网络 跨阶段特征融合 监督注意力模块 门控卷积
在线阅读 下载PDF
融合注意力机制和卷积神经网络的电网暂态电压稳定评估及可解释性分析 被引量:2
18
作者 张哲 秦博宇 +2 位作者 高鑫 丁涛 张逸兴 《电网技术》 EI CSCD 北大核心 2024年第11期4648-4657,I0057,I0056,共12页
提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention mo... 提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention module,CB AM)提升传统CNN的特征捕获能力,考虑模型特性和网络结构设计CBAMCNN组合模块。其次,建立基于CBAM-CNN的电网暂态电压稳定评估模型,揭示运行工况多变场景下系统关键电气量和稳定状态之间的映射关系。最后,基于沙普利值加性解释(Shapley additive explanations,SHAP)理论提出数据驱动模型评估结果的可解释性分析框架,提炼影响样本稳定状态的主导特征,评估各输入特征量对模型输出结果的贡献程度。在典型受端电网仿真系统中验证了所提稳定评估方法的准确性和可解释性分析方法的有效性。 展开更多
关键词 卷积注意力模块-卷积神经网络 暂态电压稳定评估 沙普利值加性解释理论 可解释性分析
在线阅读 下载PDF
基于注意力时间卷积的运动想象脑电分类方法
19
作者 徐嘉振 何文雪 李浩然 《现代电子技术》 北大核心 2024年第18期70-76,共7页
以运动想象为基础的脑机接口技术有助于运动障碍患者的康复,因而被广泛应用于康复医疗领域。针对目前脑电信号的信噪比导致深度学习方法在运动想象数据集上解码精度不高的问题,提出一种基于注意力时间卷积的运动想象脑电分类方法。首先... 以运动想象为基础的脑机接口技术有助于运动障碍患者的康复,因而被广泛应用于康复医疗领域。针对目前脑电信号的信噪比导致深度学习方法在运动想象数据集上解码精度不高的问题,提出一种基于注意力时间卷积的运动想象脑电分类方法。首先利用深度卷积模块初步提取脑电信号中的时间与空间信息,采用多尺度卷积模块中三个不同大小的卷积块进一步提取MI-EEG(运动想象脑电)数据中整体和细节特征;再经过多头注意力模块突出数据中最有价值的特征,利用时间卷积网络提取高级时间特征;最后,经过全连接网络和softmax层输出分类结果。实验结果表明,在BCI竞赛IV-2b数据集上,所提模型对运动想象二分类任务的平均分类准确率达到了84.26%,与已有的基准模型相比,该方法的准确率有显著提高。 展开更多
关键词 脑机接口 运动想象 时间卷积网络 深度学习 多头注意力模块 多尺度卷积 信号分类
在线阅读 下载PDF
基于自高斯与通道注意力的重塑卷积高光谱图像分类算法
20
作者 谭云飞 李明 +2 位作者 罗勇航 文贵豪 石超山 《辽宁工程技术大学学报(自然科学版)》 北大核心 2024年第6期102-111,共10页
针对传统卷积受限固有的网络结构,缺乏建立远程依赖关系的能力和分类精度较差等问题,提出一种基于自高斯与通道注意力的重塑卷积高光谱图像分类算法(RC-LSGA)模型。RC-LSGA模型首先采用卷积层提取浅层空间信息的特征,再使用通道注意力... 针对传统卷积受限固有的网络结构,缺乏建立远程依赖关系的能力和分类精度较差等问题,提出一种基于自高斯与通道注意力的重塑卷积高光谱图像分类算法(RC-LSGA)模型。RC-LSGA模型首先采用卷积层提取浅层空间信息的特征,再使用通道注意力机制增强光谱特征,然后通过LSGA Transformer模块和重塑卷积分支对全局-局部特征信息进行提取,最后将获得的特征输入分类器实现分类。RC-LSGA模型能够有效区分不同波段信息,对PU、SA和LK数据集中类别识别的平均准确率分别达到98.20%、99.33%和99.46%。实验结果表明,在训练样本数量有限的情况下,RC-LSGA模型性能优异,在分类任务中实用价值较高。 展开更多
关键词 高光谱图像分类 通道注意力 LSGA Transformer模块 重塑卷积
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部