期刊文献+
共找到2,986篇文章
< 1 2 150 >
每页显示 20 50 100
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
1
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
基于注意力时间卷积神经网络的光伏功率概率预测 被引量:1
2
作者 李青 《太阳能学报》 北大核心 2025年第2期326-332,共7页
针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制... 针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制,构建注意力时间卷积神经网络(ATCNN),通过分层卷积结构提取时间依赖关系,利用稀疏注意力关注重要的时间步,构建的稀疏注意力层无需更深的架构即可扩展感受野,并使预测结果更具可解释性。在两个光伏数据集上的功率概率预测结果表明,ATCNN的预测准确性优于TCNN、时间融合解码器(TFT)等先进深度学习模型,同时对于感受野的扩展,ATCNN比TCNN需要的卷积层更少、训练速度更快,并能可视化预测过程中最重要的时间步。同卷积层情况下,ATCNN比TCNN的点预测损失小15.7%,概率预测损失小15.9%。 展开更多
关键词 光伏功率 预测 时间卷积网络 稀疏注意力机制 可解释性
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
3
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
基于双重注意力时间卷积长短期记忆网络的短期负荷预测
4
作者 李丽芬 张近月 +1 位作者 曹旺斌 梅华威 《系统仿真学报》 北大核心 2025年第8期2004-2015,共12页
为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相... 为提高负荷预测的精度,充分提取负荷与其他特征因素之间的隐藏关系,提出一种基于双重注意力时间卷积长短期记忆网络(dual-attention temporal convolutional LSTM network,DATCLSNet)的负荷预测方法。基于最大信息系数法对数据集进行相关性分析,完成特征筛选以减少模型的计算量,采用滑动窗构建模型的输入。构建DA-TCLSNet预测模型,时间卷积层提取不同时间尺度下的依赖关系、挖掘负荷及天气等数据之间的非线性特征;多头稀疏自注意力层关注重要信息;长短期记忆网络层挖掘时间序列的长期依赖关系;时间模式注意力层实现自适应学习同一时间步上不同变量间的联系,并通过残差结构连接上述模块以提高模型的表达能力。实验结果表明:该方法相比于其他负荷预测方法具有更佳的预测性能。 展开更多
关键词 负荷预测 时间卷积网络 注意力 残差结构 相关性分析
在线阅读 下载PDF
基于金字塔卷积和像素注意力的分割方法
5
作者 阴桂梅 肖易勇 +4 位作者 席鑫华 赵艳丽 谭淑平 强彦 罗士朝 《计算机应用与软件》 北大核心 2025年第6期241-248,289,共9页
针对医学图像分割任务中存在的分割目标大小变化跨度大且结构复杂,以及神经网络对目标边缘细节学习效果差这两个问题,在U-Net网络的基础上构造了金字塔空洞卷积与像素级注意力网络(DP-Net)。设计金字塔空洞卷积模块并替换传统的卷积操作... 针对医学图像分割任务中存在的分割目标大小变化跨度大且结构复杂,以及神经网络对目标边缘细节学习效果差这两个问题,在U-Net网络的基础上构造了金字塔空洞卷积与像素级注意力网络(DP-Net)。设计金字塔空洞卷积模块并替换传统的卷积操作,通过多种空洞卷积的组合扩展了网络感受野并编码得到全局上下文信息;提出像素级注意力模块,在通道注意力机制的基础上进一步编码像素间的依赖关系使网络能从不同通道的特征中学习到更丰富的局部上下文信息。通过在肺部公开数据集LIDC和私人肝肿瘤数据集上进行实验评估,所提出的DP-Net在三种评估指标上都获得优于当前方法的性能,证明所提出网络改进在分割精度方面的有效性。 展开更多
关键词 深度学习 医学图像处理 图像分割 注意力机制 空洞卷积
在线阅读 下载PDF
利用多尺度卷积注意力的宽带信号稀疏检测方法
6
作者 龚安 张静蕾 +2 位作者 郭兰图 赵晓蕾 刘玉超 《电讯技术》 北大核心 2025年第11期1737-1746,共10页
宽带侦察场景下,虽然信号检测识别准确率高,但计算资源消耗过大的问题亟待解决。为此,提出了一种基于多尺度卷积注意力的稀疏检测方法(Multi-scale Convolution Attention Sparse Detection,MSCA-S)。该方法结合信号时频图的先验知识,... 宽带侦察场景下,虽然信号检测识别准确率高,但计算资源消耗过大的问题亟待解决。为此,提出了一种基于多尺度卷积注意力的稀疏检测方法(Multi-scale Convolution Attention Sparse Detection,MSCA-S)。该方法结合信号时频图的先验知识,通过建模信号在时间轴上的远距离依赖关系并抑制频率轴的无关干扰,设计了多尺度水平卷积注意力机制(Multi-scale Horizontal Convolution Attention,MSHCA),联合提取信号的多维特征,有效提升检测识别精度,并通过水平卷积降低模型计算复杂度。基于MSHCA,构建了层次化堆叠的宽带信号检测方法,利用稀疏特征参数进一步减少计算资源需求。在频谱范围为2.5 MHz的青岛实采及仿真宽带信号数据集上进行实验,MSCA-S在不同信噪比下的平均检测精度达95.6%,相比频率敏感宽带信号检测方法、基于Swin-Transformer的协议信号识别方法和基于101层残差网络的信号检测方法,精度分别提升了0.05%、2.94%和6.14%,计算量分别降低了1.53×10^(10)、1.79×10^(10)和4.59×10^(10)。 展开更多
关键词 宽带信号检测识别 注意力机制 多尺度卷积 稀疏算法
在线阅读 下载PDF
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
7
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 多尺度特征 柱塞泵
在线阅读 下载PDF
自适应卷积注意力与掩码结构协同的显著目标检测
8
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
融合注意力机制的多视图卷积网络癫痫智能辅助检测
9
作者 李奇 闫旭荣 +3 位作者 武岩 赵迪 常立娜 孙瀚琳 《科学技术与工程》 北大核心 2025年第5期1988-1995,共8页
针对单一视图网络癫痫检测识别精度低的问题,提出一种融合注意力机制的多视图卷积网络癫痫智能辅助检测模型(multi-view convolutional network with fused attention mechanism,FAM-MCNN)。该模型从时域、频域、时频域和非线性域提取... 针对单一视图网络癫痫检测识别精度低的问题,提出一种融合注意力机制的多视图卷积网络癫痫智能辅助检测模型(multi-view convolutional network with fused attention mechanism,FAM-MCNN)。该模型从时域、频域、时频域和非线性域提取多视图特征来全面表征脑电信号;采用多尺度卷积捕捉不同层次的细节信息;引入注意力机制分别从视图维度和单个特征向量维度对特征进行加权融合,从而提高对癫痫患者不同类别脑电信号的区分能力。在CHB-MIT癫痫数据集上进行的对比实验结果显示,与单一视图网络相比,FAM-MCNN模型的平均准确率、灵敏度、特异度分别提高了14.29%、16.13%、12.54%。此外,对该模型采用少量训练样本(25%)进行实验,结果显示其检测性能达到了拥有大量训练样本(80%~90%)的对比模型水平。 展开更多
关键词 脑电信号 多视图卷积 注意力机制 癫痫智能辅助检测
在线阅读 下载PDF
基于改进时域卷积网络与多头自注意力机制的间歇过程质量预测模型
10
作者 赵小强 柳勇勇 +1 位作者 惠永永 刘凯 《计算机应用》 北大核心 2025年第7期2245-2252,共8页
为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自... 为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自注意力机制(MHSA)的间歇过程质量预测模型(BMTCN-MHSA)。首先,将间歇过程的三维数据展开为二维矩阵形式,并对数据进行归一化处理,再引入奇异谱分析法(SSA)分解重构数据;其次,在时域卷积的残差部分融入BGN以降低网络模型在批量大小变化时的敏感度,引入Mish激活函数以提高模型的泛化能力,并利用多头自注意力机制对序列中不同位置的特征信息进行关联和权重分配,从而进一步提取序列中的关键特征信息和相互依赖关系,进而更好地捕捉间歇过程的动态特征;最后,使用青霉素仿真实验数据进行实验验证。实验结果表明,相较于TCN模型,BMTCN-MHSA模型的平均绝对误差(MAE)降低了56.86%,均方误差(MSE)降低了48.80%,而决定系数(R2)达到了99.48%,这表明BMTCN-MHSA模型提高了间歇过程质量预测的准确性。 展开更多
关键词 间歇过程 质量预测 奇异谱分析法 时域卷积网络 多头自注意力机制
在线阅读 下载PDF
融合注意力机制与贝叶斯优化卷积网络的机场无人机检测
11
作者 张伟 常本强 +2 位作者 杨旭 杨雪 张添龙 《安全与环境学报》 北大核心 2025年第7期2633-2642,共10页
声学探测技术可用于机场“黑飞”无人机监测,但易受复杂环境中的噪声影响。为解决这一问题,提出了一种融合卷积块注意力机制及贝叶斯优化卷积神经网络(Convolutional Block Attention Module-Bayesian Optimization-Convolutional Neura... 声学探测技术可用于机场“黑飞”无人机监测,但易受复杂环境中的噪声影响。为解决这一问题,提出了一种融合卷积块注意力机制及贝叶斯优化卷积神经网络(Convolutional Block Attention Module-Bayesian Optimization-Convolutional Neural Network, CBAM-BO-CNN)的机场无人机声学信号检测模型。该模型通过引入CBAM模块,对输入的数据从通道和空间两个独立的维度依次提取特征以增强网络对无人机梅尔频谱图的特征提取能力,并采用贝叶斯优化算法搜寻网络模型的最优超参数组合。经数据集验证,该模型实现了98.8%的识别准确率,且在低信噪比条件下仍能保持高于94%的准确率。后通过自主搭建简易的16阵元麦克风阵列,采集了60个不同方位的无人机音频数据用以验证模型的实用性。试验结果表明,应用CBAM-BO-CNN检测模型的声学监测设备在100 m范围内对无人机信号的识别准确率达94%。所提出的无人机声学信号检测模型可应对机场日益严重的无人机入侵问题,为机场安全运营提供强有力的技术支持。 展开更多
关键词 安全工程 无人机检测 声学探测 卷积注意力机制 贝叶斯优化
在线阅读 下载PDF
融合注意力的卷积自编码器视频异常检测方法
12
作者 宋雪桦 车雷 +2 位作者 张星 茆玉欣 张海侠 《江苏大学学报(自然科学版)》 北大核心 2025年第6期677-684,共8页
针对目前视频异常检测方法未充分利用视频序列中的上下文语义信息的问题,提出一种融合注意力的卷积自编码器视频异常检测方法.首先,模型采用抽取帧预测的方式,并利用基于Inception模块的卷积自编码器提取输入视频序列中不同尺度的特征信... 针对目前视频异常检测方法未充分利用视频序列中的上下文语义信息的问题,提出一种融合注意力的卷积自编码器视频异常检测方法.首先,模型采用抽取帧预测的方式,并利用基于Inception模块的卷积自编码器提取输入视频序列中不同尺度的特征信息.其次,为学习视频帧中运动对象和静止背景的交互信息,引入位置注意力和通道注意力.最后,在卷积自编码器中加入记忆增强模块来限制模型泛化性,并引入潜在损失函数来进一步增大异常事件的重构误差.推导了异常得分计算,给出了异常检测数据集.为验证所提出方法的有效性,进行了异常行为定性分析、模型性能比较试验、记忆项更新阈值试验以及消融试验.结果表明:该方法能有效检测视频中的异常事件,并具有较高的检测精度,在UCSD Ped2、CUHK Avenue和ShanghaiTech数据集上的AUC值分别为97.7%、88.9%和73.8%. 展开更多
关键词 视频异常检测 深度学习 卷积自编码器 注意力机制 记忆增强 抽取帧预测
在线阅读 下载PDF
基于注意力机制的双卷积图像去噪网络
13
作者 周先春 吕梦楠 +3 位作者 芮旸 唐彬鑫 杜志亭 陈玉泽 《电子测量与仪器学报》 北大核心 2025年第2期60-71,共12页
近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet)... 近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet),它由多尺度特征特征提取网络、双卷积神经网络及动态特征精炼注意力机制组成。多尺度特征提取网络通过不同尺度的卷积获取图像特征,提高灵活性。双卷积神经网络上下分支均采用跳跃连接及扩张卷积来增大感受野。动态特征精炼注意力机制增强特征表示的精度和区分能力。这种结构设计不仅扩大了感受野,还更有效地提取和融合图像特征,显著提升去噪效果。研究结果表明,与最先进的模型相比,提出的MA-DFRNet在所有对比的噪声水平下具有更高的峰值信噪比(PSNR)和结构相似性(SSIM)值,PSNR提高了0.2 dB左右,SSIM提高了1%左右,对于噪声水平较高的图像更具鲁棒性,并且在视觉上更好地保留了图像细节,实现去噪和细节保留之间的平衡。 展开更多
关键词 图像去噪 卷积神经网络 注意力机制 跳跃连接 多尺度特征提取网络
在线阅读 下载PDF
基于U^(2)-Net和CBAM融合注意力的双模态睡眠分期研究 被引量:1
14
作者 赵倩 李锦 +2 位作者 凤飞龙 强宁 胡静 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期1-11,共11页
针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Ne... 针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Net网络并行提取EEG和ECG中的波形特征;其次,利用CBAM融合注意力对全部特征进行权重分配;最后,使用Softmax激活函数对睡眠时期进行六分类。结果表明:基于U^(2)-Net和CBAM融合注意力模型进行睡眠分期时,使用ECG单模态信号的六分类总体准确率为80.2%,F1分数为75.3%;使用EEG单模态信号的六分类总体准确率为85.8%,F1分数为81.7%;使用EEG-ECG双模态信号的六分类总体准确率为90.4%,F1分数为85.6%。提出的双模态睡眠分期模型是可行有效的,并且为自动睡眠分期提供了一种新的思路。 展开更多
关键词 自动睡眠分期 EEG-ECG双模态信号 U^(2)-Net网络 cbam融合注意力
在线阅读 下载PDF
融合CBAM注意力机制与可变形卷积的车道线检测 被引量:3
15
作者 胡丹丹 张忠婷 牛国臣 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2150-2160,共11页
为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响... 为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响应;引入可变形卷积替换常规卷积,用带偏移的采样学习车道线的几何形变,提高卷积核的建模能力;基于行锚分类思想,对行方向上的位置进行选择和分类分析,预测车道线的位置信息,提高车道线检测模型的实时性。在车道线公开数据集上对所提CADCN方法进行训练及验证,在满足实时性的情况下,CADCN方法在TuSimple数据集上准确率达到96.63%,在CULane数据集上综合评估指标F1平均值达到74.4%,验证了所提方法的有效性。 展开更多
关键词 车道线检测 特征提取 注意力机制 可变形卷积网络 行锚分类
在线阅读 下载PDF
基于注意力机制和空洞卷积的无人机图像目标检测 被引量:1
16
作者 赖勤波 马正华 朱蓉 《计算机应用与软件》 北大核心 2025年第2期227-235,共9页
针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两... 针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两个层面提高算法的特征表达能力,并使用ROI Align代替ROI Pooling,基于K-Means重新设计RPN(Region Proposal Networks)锚框尺寸,减小目标回归过程的坐标偏差。实验表明,该算法能够提升无人机图像目标检测精度,在RSOD-Dataset和无人机图像数据集上,mAP分别达到92.52%和98.07%。 展开更多
关键词 无人机图像 FASTER R-CNN 注意力机制 空洞卷积 特征融合 目标检测
在线阅读 下载PDF
集多头点注意力与边卷积的点云分类分割模型 被引量:1
17
作者 熊伟 娄政浩 +1 位作者 徐敏夫 袁和金 《计算机辅助设计与图形学学报》 北大核心 2025年第3期446-456,共11页
针对动态图卷积模型只在局部尺度上独立提取点特征,未将局部点互相关联的问题,提出了一种集多头点注意力与边卷积的点云分类和分割模型.首先,设计单头点注意力模块分别计算点云的注意力特征与邻域注意力特征,学习点云的旋转不变性,使用... 针对动态图卷积模型只在局部尺度上独立提取点特征,未将局部点互相关联的问题,提出了一种集多头点注意力与边卷积的点云分类和分割模型.首先,设计单头点注意力模块分别计算点云的注意力特征与邻域注意力特征,学习点云的旋转不变性,使用多头机制将单头点注意力模块进行聚合,构建多头点注意力模块,赋予邻域内不同点相应的注意力系数;其次,设计加权金字塔池化模块进行特征融合,获得更加丰富的特征信息;最后,提出结合交叉熵损失和焦点损失的联合损失函数,解决数据集中存在的难分类样本和类别不平衡问题.在ModelNet40数据集和ShapeNet数据集上分别进行了点云分类与分割实验,在ModelNet40数据集上,所提模型的总体精度提升到了94.1%;在ShapeNet数据集上的平均交并比提升到了86.3%,有效地提升了模型的分类和分割性能. 展开更多
关键词 点云数据 分类与分割 多头点注意力 卷积 特征融合 损失函数
在线阅读 下载PDF
融合动态卷积和注意力机制的多层感知机语音情感识别 被引量:1
18
作者 张雨萌 张欣 +1 位作者 高谋 赵虎林 《计算机科学与探索》 北大核心 2025年第4期1065-1075,共11页
语音情感识别技术通过分析语音信号推断说话者情绪,增强人机交互的自然性和智能性。然而,现有模型往往忽视时频语义信息,影响识别准确性。为此,提出了一种融合动态卷积与注意力机制的多层感知机模型,显著提高了情感识别的准确度及信息... 语音情感识别技术通过分析语音信号推断说话者情绪,增强人机交互的自然性和智能性。然而,现有模型往往忽视时频语义信息,影响识别准确性。为此,提出了一种融合动态卷积与注意力机制的多层感知机模型,显著提高了情感识别的准确度及信息利用效率。将输入的语音信号转化为梅尔频谱图,捕捉信号细节变化,更贴切地反映人类对声音的感知,为后续特征提取奠定了基础。通过词元化处理将梅尔频谱图转化为词元,降低了数据的复杂性。借助动态卷积与分离注意力机制高效提取关键的时频特征。一方面,动态卷积能够适应不同时间和频率上的尺度变化,优化了特征捕捉效率;另一方面,分离注意力机制增强了模型对关键信息的聚焦能力,有效提升了模型对特征的表达能力。结合动态卷积与分离注意力机制的优势,该模型能够更加充分地提取关键声学特征,从而实现了更高效、更精准的情感识别。在RAVDESS、EmoDB和CASIA三个语音情感数据库上的测试显示,模型识别准确率显著优于现有技术,达到86.11%、95.33%和82.92%。这验证了模型在复杂情感识别任务的高效性和准确性,以及动态卷积和注意力机制的有效性。 展开更多
关键词 语音情感识别 梅尔频谱图 多层感知机 动态卷积 注意力机制
在线阅读 下载PDF
基于Ghost卷积与自适应注意力的点云分类 被引量:1
19
作者 舒密 王占刚 《现代电子技术》 北大核心 2025年第6期106-112,共7页
点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,... 点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,提出一种基于点云Transformer的轻量级特征增强融合分类网络EFF-LPCT。EFF-LPCT使用一维化Ghost卷积对原始网络进行重构,以降低计算复杂度和内存要求;引入自适应支路权重,以实现注意力层级间的多尺度特征融合;利用多个通道注意力模块增强特征的通道交互信息,以提高模型分类效果。在ModelNet40数据集进行的实验结果表明,EFF-LPCT在达到93.3%高精度的同时,相较于点云Transformer减少了1.11 GFLOPs的浮点计算量和0.86×10^(6)的参数量。 展开更多
关键词 点云分类 Transformer网络 Ghost卷积 特征增强融合模块 ECA通道注意力 特征学习
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:2
20
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
上一页 1 2 150 下一页 到第
使用帮助 返回顶部