针对无人机影像中道路小目标漏检和目标之间遮挡导致的目标检测精度低、鲁棒性差等问题,提出一种多尺度的道路目标检测算法——YOLOv5-FTCE。执行多尺度的目标定位改进,采用完全交并比(Complete Intersection over Union,CIoU)边界框损...针对无人机影像中道路小目标漏检和目标之间遮挡导致的目标检测精度低、鲁棒性差等问题,提出一种多尺度的道路目标检测算法——YOLOv5-FTCE。执行多尺度的目标定位改进,采用完全交并比(Complete Intersection over Union,CIoU)边界框损失,通过K-means算法对先验框进行重聚类,调整先验框的锚框参数并增加一个针对小目标的YOLO检测头;引入Transformer encoder结构融入C3模块改进Backbone网络,增强网络对不同局部信息的捕获能力;选用基于特征重组的Content-Aware ReAssembly of FEatures(CARAFE)模块进行上采样,提高上采样性能的同时减少特征处理过程中的信息损失;引入高效注意力模块(Efficient Attention Module,EAM)融合空间和通道信息,对网络中重要的信息进行增强。结果表明,YOLOv5-FTCE算法在VisDrone数据集上,检测精确率相比原始算法提高了9.5%,mAP50提高了8.9%,优于YOLOv7等其他常见的算法,有效改善了道路小目标和遮挡目标的漏检现象。展开更多
针对遥感图像建筑物的轮廓分割不完整、边界分割模糊和阴影干扰等导致的错误分割问题,提出一种基于VGG16的卷积块注意力深度可分离卷积U-Net网络(VGG16 Convolutional Block Attention and Deep Separable Convolution U-Net,VCDG-UNet...针对遥感图像建筑物的轮廓分割不完整、边界分割模糊和阴影干扰等导致的错误分割问题,提出一种基于VGG16的卷积块注意力深度可分离卷积U-Net网络(VGG16 Convolutional Block Attention and Deep Separable Convolution U-Net,VCDG-UNet)。为对建筑物特征进行提取,编码器部分模型以具有强大特征提取能力的VGG16作为骨干网络;解码器部分用深度可分离卷积代替普通卷积来减少参数量并融合不同尺度的特征;引入卷积块注意力模块(Convolutional Block Attention Module,CBAM)加入跳跃连接中,使其更有效地从不同尺度的图像中提取上下文信息并提高其对重要区域的关注度;为解决网络训练过程中的梯度消失问题,使用了高斯误差线性单元(Gaussian Error Linear Unit,GELU)。实验结果显示,改进后的网络在WHU和INRIA数据集上的平均交并比(mean Intersection over Union,mIoU)和F1-score分别达到了94.20%、96.83%和89.69%、94.51%,相较于基础模型高出了1.59%、0.76%和2.8%、1.59%。展开更多
文摘针对无人机影像中道路小目标漏检和目标之间遮挡导致的目标检测精度低、鲁棒性差等问题,提出一种多尺度的道路目标检测算法——YOLOv5-FTCE。执行多尺度的目标定位改进,采用完全交并比(Complete Intersection over Union,CIoU)边界框损失,通过K-means算法对先验框进行重聚类,调整先验框的锚框参数并增加一个针对小目标的YOLO检测头;引入Transformer encoder结构融入C3模块改进Backbone网络,增强网络对不同局部信息的捕获能力;选用基于特征重组的Content-Aware ReAssembly of FEatures(CARAFE)模块进行上采样,提高上采样性能的同时减少特征处理过程中的信息损失;引入高效注意力模块(Efficient Attention Module,EAM)融合空间和通道信息,对网络中重要的信息进行增强。结果表明,YOLOv5-FTCE算法在VisDrone数据集上,检测精确率相比原始算法提高了9.5%,mAP50提高了8.9%,优于YOLOv7等其他常见的算法,有效改善了道路小目标和遮挡目标的漏检现象。
文摘针对遥感图像建筑物的轮廓分割不完整、边界分割模糊和阴影干扰等导致的错误分割问题,提出一种基于VGG16的卷积块注意力深度可分离卷积U-Net网络(VGG16 Convolutional Block Attention and Deep Separable Convolution U-Net,VCDG-UNet)。为对建筑物特征进行提取,编码器部分模型以具有强大特征提取能力的VGG16作为骨干网络;解码器部分用深度可分离卷积代替普通卷积来减少参数量并融合不同尺度的特征;引入卷积块注意力模块(Convolutional Block Attention Module,CBAM)加入跳跃连接中,使其更有效地从不同尺度的图像中提取上下文信息并提高其对重要区域的关注度;为解决网络训练过程中的梯度消失问题,使用了高斯误差线性单元(Gaussian Error Linear Unit,GELU)。实验结果显示,改进后的网络在WHU和INRIA数据集上的平均交并比(mean Intersection over Union,mIoU)和F1-score分别达到了94.20%、96.83%和89.69%、94.51%,相较于基础模型高出了1.59%、0.76%和2.8%、1.59%。