期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
KCPNet:张量分解的轻量卷积模块设计、部署与应用 被引量:3
1
作者 王鼎衡 赵广社 +1 位作者 姚满 李国齐 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第3期135-146,共12页
为解决现有卷积模块在实际应用中内存消耗高、计算效率低的问题,在Kronecker CANDECOMP/PARAFAC(KCP)张量分解的基础上,提出一种轻量、高效、瓶颈结构的卷积模块(KCPNet)。对普通卷积作2阶KCP分解,生成的因子张量分别映射为两层负责输... 为解决现有卷积模块在实际应用中内存消耗高、计算效率低的问题,在Kronecker CANDECOMP/PARAFAC(KCP)张量分解的基础上,提出一种轻量、高效、瓶颈结构的卷积模块(KCPNet)。对普通卷积作2阶KCP分解,生成的因子张量分别映射为两层负责输入输出通道变化的1×1卷积和两层负责特征提取的变通道可分离卷积,再将这4层卷积组成含有瓶颈结构的KCPNet卷积模块。基于OpenCL并行编程框架将KCPNet部署于嵌入式GPU,并围绕pico-flexx深度相机开发了动态手势识别应用。实验结果表明:在ImageNet大规模标准数据集上,相比ResNet、ResNeXt等已有的张量分解卷积模块,KCPNet在准确率相近的情况下能够兼顾空间和计算复杂度的效率;在中等规模标准数据集CIFAR-10上,KCPNet能够在无明显精度损失的前提下将传统的VGG模型压缩至原先的16.1%并节约75.5%的计算量;在面向嵌入式GPU时,并行部署的KCPNet可使CIFAR-10的识别速度达到100帧/s。以KCPNet为核心开发的手势识别应用程序可达到99.5%的准确率和100帧/s以上的运行速度,内存开销为22 MB。 展开更多
关键词 张量分解 Kronecker CANDECOMP/PARAFAC张量分解 轻量卷积模块 并行部署 手势识别
在线阅读 下载PDF
基于DenseNet和卷积注意力模块的高精度手势识别 被引量:5
2
作者 赵雅琴 宋雨晴 +3 位作者 吴晗 何胜阳 刘璞秋 吴龙文 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期967-976,共10页
非接触的手势识别是一种新型人机交互方式,在增强现实(AR)/虚拟现实(VR)、智能家居、智能医疗等方面有着广阔的应用前景,近年来成为一个研究热点。由于需要利用毫米波雷达进行更精确的微动手势识别,该文提出一种新型的基于MIMO毫米波雷... 非接触的手势识别是一种新型人机交互方式,在增强现实(AR)/虚拟现实(VR)、智能家居、智能医疗等方面有着广阔的应用前景,近年来成为一个研究热点。由于需要利用毫米波雷达进行更精确的微动手势识别,该文提出一种新型的基于MIMO毫米波雷达的微动手势识别方法。采用4片AWR1243雷达板级联而成的毫米波级联(MMWCAS)雷达采集手势回波,对手势回波进行时频分析,基于距离-多普勒(RD)图和3D点云检测出人手目标。通过数据预处理,提取手势目标的距离-时间谱图(RTM)、多普勒-时间谱图(DTM)、方位角-时间谱图(ATM)和俯仰角-时间谱图(ETM),更加全面地表征手势的运动特征,并形成混合特征谱图(FTM),对12种微动手势进行识别。设计了基于DenseNet和卷积注意力模块的手势识别网络,将混合特征谱图作为网络的输入,创新性地融合了卷积注意力模块(CBAM),实验表明,识别准确率达到99.03%,且该网络将注意力放在手势动作的前半段,实现了高精度的手势识别。 展开更多
关键词 手势识别 毫米波雷达 卷积神经网络 卷积注意力模块
在线阅读 下载PDF
基于双流自适应时空增强图卷积网络的手语识别 被引量:1
3
作者 金彦亮 吴筱溦 《应用科学学报》 CAS CSCD 北大核心 2024年第2期189-199,共11页
针对提取手语特征过程中出现的信息表征能力差、信息不完整问题,设计了一种双流自适应时空增强图卷积网络(two-stream adaptive enhanced spatial temporal graph convolutional network,TAEST-GCN)实现基于孤立词的手语识别。该网络使... 针对提取手语特征过程中出现的信息表征能力差、信息不完整问题,设计了一种双流自适应时空增强图卷积网络(two-stream adaptive enhanced spatial temporal graph convolutional network,TAEST-GCN)实现基于孤立词的手语识别。该网络使用人体身体、手部和面部节点作为输入,构造基于人体关节和骨骼的双流结构。通过自适应时空图卷积模块生成不同部位之间的连接,并充分利用其中的位置和方向信息。同时采用残差连接方式设计自适应多尺度时空注意力模块,进一步增强该网络在空域和时域的卷积能力。将双流网络提取到的有效特征进行加权融合,可以分类输出手语词汇。最后在公开的中文手语孤立词数据集上进行实验,在100类词汇和500类词汇分类任务中准确率达到了95.57%和89.62%。 展开更多
关键词 骨架数据 双流结构 自适应时空图卷积模块 自适应多尺度时空注意力模块 特征融合
在线阅读 下载PDF
基于卷积注意力模块的端到端遥感图像分类 被引量:10
4
作者 徐风 苗哲 业巧林 《林业工程学报》 CSCD 北大核心 2020年第4期133-138,共6页
随着图像信息处理技术的发展,大量由各式飞行器对地观测所采集的遥感图像数据被应用于各领域实际生产生活中。传统遥感图像分类方法包含一系列复杂的处理流程,在处理效率和效果上已经难以满足当下的需求。随着人工智能相关技术的发展,... 随着图像信息处理技术的发展,大量由各式飞行器对地观测所采集的遥感图像数据被应用于各领域实际生产生活中。传统遥感图像分类方法包含一系列复杂的处理流程,在处理效率和效果上已经难以满足当下的需求。随着人工智能相关技术的发展,基于卷积神经网络的遥感图像分类方法开始占据主导地位。为减少算法流程中的复杂处理与提高分类的精度,笔者提出一种基于卷积注意力模块的端到端遥感图像分类框架,该框架采用卷积神经网络框架ResNet101作为整个框架的主干网络。在ResNet101网络4个阶段的卷积模块之间嵌入卷积注意力模块,使得模型关注于最具有类别区分度的区域,从而得到更好的分类结果。在模型训练阶段,采用开源的深度学习开源框架Pytorch对训练数据进行在线增广处理,对训练数据进行随机角度旋转,防止训练过程中发生过拟合现象。本研究基于PatternNet与NWPU-RESISC45两个公开数据集,并仅划分少量数据用于模型训练。结果表明:相比已有的方法,本研究提出的框架能够在GPU加速的环境中,以更高的精度分类遥感图像,满足了实时处理的需求,且支持端到端对遥感图像进行分类,不需要复杂的处理流程。 展开更多
关键词 卷积神经网络 遥感图像 卷积注意力模块 图像分类
在线阅读 下载PDF
基于卷积注意力机制的阀门内漏声发射识别方法
5
作者 黄鑫 屈文忠 肖黎 《振动与冲击》 EI CSCD 北大核心 2024年第9期105-114,共10页
阀门结构作为核电厂的关键设备部件之一,因长期处于高温高压环境下,其闸板或阀瓣易发生热变形或磨损导致密封不良,进而引发内漏事故。实时在线识别阀门的内漏状态,对提升核电机组热效率、提高阀门可靠性具有重要意义。因实际工业现场的... 阀门结构作为核电厂的关键设备部件之一,因长期处于高温高压环境下,其闸板或阀瓣易发生热变形或磨损导致密封不良,进而引发内漏事故。实时在线识别阀门的内漏状态,对提升核电机组热效率、提高阀门可靠性具有重要意义。因实际工业现场的基底噪声极易掩盖阀门内漏的声发射信号,进而造成阀门内漏状态的误判。为实现阀门内漏状态的快速准确识别,搭建了阀门内漏检测试验台架,开发了基于声发射方法的阀门内漏检测分析系统,将卷积注意力机制引入卷积神经网络中,实现高效快速地识别阀门内漏状态。结果表明,基于阀门内漏的声发射信号频域数据,利用卷积注意力机制神经网络能有效准确地识别阀门内漏状态,在内漏率为26 L/h时,识别准确率高达98%,并且具有较好的可靠性和鲁棒性。 展开更多
关键词 阀门结构 内漏 声发射 卷积注意力模块 卷积神经网络
在线阅读 下载PDF
基于卷积注意力模块和无锚框检测网络的行人跟踪算法 被引量:9
6
作者 张红颖 贺鹏艺 《电子与信息学报》 EI CSCD 北大核心 2022年第9期3299-3307,共9页
针对多目标跟踪过程中遮挡严重时的目标身份切换、跟踪轨迹中断等问题,该文提出一种基于卷积注意力模块(CBAM)和无锚框(anchor-free)检测网络的行人跟踪算法。首先,在高分辨率特征提取网络HrnetV2的基础上,对stem阶段引入注意力机制,以... 针对多目标跟踪过程中遮挡严重时的目标身份切换、跟踪轨迹中断等问题,该文提出一种基于卷积注意力模块(CBAM)和无锚框(anchor-free)检测网络的行人跟踪算法。首先,在高分辨率特征提取网络HrnetV2的基础上,对stem阶段引入注意力机制,以提取更具表达力的特征,从而加强对重识别分支的训练;其次,为了提高算法的运算速度,使检测和重识别分支共享特征权重且并行运行,同时减少头网络的卷积通道数以降低参数运算量;最后,设定合适的参数对网络进行充分的训练,并使用多个测试集对算法进行测试。实验结果表明,该文算法相较于FairMOT在2DMOT15,MOT17,MOT20数据集上的精确度分别提升1.1%,1.1%,0.2%,速度分别提升0.82,0.88,0.41 fps;相较于其他几种主流算法拥有最少的目标身份切换次数。该文算法能够更好地适用于遮挡严重的场景,实时性也有所提高。 展开更多
关键词 目标身份切换 高分辨率特征提取网络 卷积注意力模块 无锚框检测网络 头网络 FairMOT
在线阅读 下载PDF
基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究 被引量:3
7
作者 冯新伟 黄宇祥 王忠立 《铁道技术监督》 2023年第4期16-24,共9页
接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(... 接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(convolutional block attention module,CBAM)和双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)的接触网支持装置检测方法。在YOLO v5s网络模型基础上,该方法通过CBAM增强接触网支持装置的特征提取,结合BiFPN,实现不同零部件分辨率特征图的融合。利用4C装置获得的图像数据集,开展验证试验。试验结果表明,相对YOLO v5s网络模型,融合CBAM和BiFPN的接触网支持装置检测方法,网络平均精度mAP@0.5提高2.12%;能显著提升小目标检测效果,提高定位的准确性和稳定性,对接触网状态的智能分析有重要意义。 展开更多
关键词 接触网 支持装置 检测方法 卷积块注意力模块 双向特征金字塔网络
在线阅读 下载PDF
基于可解释深度卷积网络的空时自适应处理方法
8
作者 廖志鹏 段克清 +2 位作者 何锦浚 邱梓洲 王永良 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第4期917-928,共12页
在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积... 在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积神经网络(MDCNN),实现了小样本条件下对杂波协方差矩阵快速、准确、稳定估计。所构建MDCNN网络由映射模块、数据模块、先验模块和超参数模块组成。其中,前后端映射模块分别对应数据的预处理和后处理;单组数据模块和先验模块共同完成一次迭代优化,网络主体由多组数据模块和先验模块构成,可实现多次等效迭代优化;超参数模块则用来调整等效迭代中可训练参数。上述子模块均具有明确数学表述和物理含义,因此所构造网络具有良好的可解释性。实测数据处理结果表明,在实际非均匀杂波环境下该文所提方法杂波抑制性能优于现有典型小样本STAP方法,且运算时间较后者大幅降低。 展开更多
关键词 模块深度卷积神经网络 空时自适应处理 稀疏恢复 非均匀杂波 杂波抑制
在线阅读 下载PDF
引入卷积块注意力模块的YOLOv5网络在地铁车辆一系弹簧断裂检测中的应用 被引量:1
9
作者 江现昌 邹庆春 +1 位作者 李翔泽 王静 《铁道技术监督》 2023年第10期29-33,共5页
作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的... 作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的效果。针对这一问题,在YOLOv5网络的基础上加以改进,加入更小的初始检测锚框,并且在主干网络加入空间和通道注意力模块。对比试验结果表明,改进后平均准确率提高3%,有效提高了小目标的检测能力。 展开更多
关键词 地铁动车组 转向架 一系弹簧 YOLOv5算法 卷积块注意力模块 注意力机制 目标检测
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
10
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
改进RRPN模型的遥感图像目标检测
11
作者 鲁晓波 郭艳光 辛春花 《现代电子技术》 北大核心 2025年第1期8-16,共9页
针对遥感目标背景复杂、易受外界环境干扰,传统方法无法满足复杂场景下的检测高精度与实时性要求的问题,提出基于改进RRPN模型的遥感图像目标检测方法。首先,将特征金字塔(FPN)架构引入到了模型的残差网络中,使得遥感图像的高、低层特... 针对遥感目标背景复杂、易受外界环境干扰,传统方法无法满足复杂场景下的检测高精度与实时性要求的问题,提出基于改进RRPN模型的遥感图像目标检测方法。首先,将特征金字塔(FPN)架构引入到了模型的残差网络中,使得遥感图像的高、低层特征得到了有效融合;其次,在特征提取网络中添加了通道和空间相融合的注意力机制(CBAM),提升了模型在遥感图像目标特征提取方面的跨通道和空间处理能力;此外,将剔除重叠建议框时的原始NMS算法优化为DIoUNMS算法,综合考虑遥感图像候选框之间的重叠度、距离、尺度大小等因素,使目标框的回归过程更加稳定。对比实验与消融实验显示,所提方法在公共数据集DOTA和HRSC2016上获得的平均精度均值mAP分别可高达77.30%、90.24%,较原始RRPN模型分别提高了8.29%、11.16%,且优于其他几种较新的经典模型,表明所提方法对于复杂环境下的遥感图像目标检测是合理且有效的。 展开更多
关键词 目标检测 遥感图像 带旋转的候选框算法 卷积通道注意力模块 DIoU-NMS 特征金字塔 DOTA HRSC2016数据集
在线阅读 下载PDF
基于YOLOv8n的夜间车辆检测
12
作者 冯迎宾 刘艾妮 《沈阳理工大学学报》 2025年第2期1-6,12,共7页
针对夜间环境光照度低、光照分布不均匀导致车辆检测细节模糊以及车辆漏检和错检等问题,提出一种改进YOLOv8n的夜间目标检测算法。首先,引入图像增强算法Zero-DCE提高图像质量,减小光照度低、光照分布不均匀的影响,同时使用LSKNet作为... 针对夜间环境光照度低、光照分布不均匀导致车辆检测细节模糊以及车辆漏检和错检等问题,提出一种改进YOLOv8n的夜间目标检测算法。首先,引入图像增强算法Zero-DCE提高图像质量,减小光照度低、光照分布不均匀的影响,同时使用LSKNet作为主干网络,调整动态感受野,改善模型特征提取能力,提高检测精度;其次,采用空间和通道卷积(SSConv)模块融合C2f模块,减少特征之间的空间和通道冗余;最后,提出通用感知大内核卷积网络(SPPF_UniRepLKNet)替换SPPF模块,使用非膨胀卷积更好地提升感受野,从而有效捕捉模型的特征,提高模型的检测精度。实验结果表明,改进YOLOv8n算法的检测精确率和平均精度均值分别提高了4.7%和4.9%,适用于夜间环境下车辆检测。 展开更多
关键词 目标检测 图像增强 LSKNet 空间和通道卷积模块 通用感知大内核卷积网络
在线阅读 下载PDF
基于FPGA的卷积神经网络并行加速结构设计 被引量:9
13
作者 刘志成 祝永新 +2 位作者 汪辉 田犁 封松林 《微电子学与计算机》 CSCD 北大核心 2018年第10期80-84,共5页
本文根据卷积神经网络特点,提出了一种基于FPGA的流水线并行加速方案,设计优化了卷积模块电路、激活模块电路以及下采样模块电路,从而构建了卷积神经网络运算的FPGA基本单元.在网络结构和处理数据相同的情况下,50MHz频率的FPGA计算效率... 本文根据卷积神经网络特点,提出了一种基于FPGA的流水线并行加速方案,设计优化了卷积模块电路、激活模块电路以及下采样模块电路,从而构建了卷积神经网络运算的FPGA基本单元.在网络结构和处理数据相同的情况下,50MHz频率的FPGA计算效率为CPU的8倍、GPU的近5倍,而功耗则只占GPU的27.8%. 展开更多
关键词 卷积神经网络 FPGA 卷积模块 激活模块 下采样模块
在线阅读 下载PDF
基于无人机影像的改进YOLOv5道路目标检测
14
作者 马荣贵 张翼 董世浩 《无线电工程》 2025年第1期1-10,共10页
针对无人机影像中道路小目标漏检和目标之间遮挡导致的目标检测精度低、鲁棒性差等问题,提出一种多尺度的道路目标检测算法——YOLOv5-FTCE。执行多尺度的目标定位改进,采用完全交并比(Complete Intersection over Union,CIoU)边界框损... 针对无人机影像中道路小目标漏检和目标之间遮挡导致的目标检测精度低、鲁棒性差等问题,提出一种多尺度的道路目标检测算法——YOLOv5-FTCE。执行多尺度的目标定位改进,采用完全交并比(Complete Intersection over Union,CIoU)边界框损失,通过K-means算法对先验框进行重聚类,调整先验框的锚框参数并增加一个针对小目标的YOLO检测头;引入Transformer encoder结构融入C3模块改进Backbone网络,增强网络对不同局部信息的捕获能力;选用基于特征重组的Content-Aware ReAssembly of FEatures(CARAFE)模块进行上采样,提高上采样性能的同时减少特征处理过程中的信息损失;引入高效注意力模块(Efficient Attention Module,EAM)融合空间和通道信息,对网络中重要的信息进行增强。结果表明,YOLOv5-FTCE算法在VisDrone数据集上,检测精确率相比原始算法提高了9.5%,mAP50提高了8.9%,优于YOLOv7等其他常见的算法,有效改善了道路小目标和遮挡目标的漏检现象。 展开更多
关键词 道路目标检测 YOLOv5 Transformer编码器 特征重组 高效卷积注意力模块
在线阅读 下载PDF
基于深度学习的低照度遥感图像智能分割方法
15
作者 兰海涛 吴文玲 《信息技术与信息化》 2025年第3期38-41,共4页
在低照度遥感图像中,由于光照不足,图像往往呈现出对比度低、细节模糊以及噪声显著增强的特点,这些不利因素直接影响了图像信息的有效提取。低对比度使得目标与背景之间的差异难以辨识,而噪声的增加则进一步干扰了图像中的有用信息,导... 在低照度遥感图像中,由于光照不足,图像往往呈现出对比度低、细节模糊以及噪声显著增强的特点,这些不利因素直接影响了图像信息的有效提取。低对比度使得目标与背景之间的差异难以辨识,而噪声的增加则进一步干扰了图像中的有用信息,导致分割时阈值、区域生长条件等参数的最优值寻找变得异常困难,严重影响图像分割的准确性和效率。为此,文章提出了一种基于深度学习的低照度遥感图像智能分割方法。借助多尺度Retinex算法,对原始低照度遥感图像进行非线性增强处理,借助对比度拉伸的方式进一步改善图像在视觉效果方面的质量;在分割阶段,构建了以各向异性上下文融合网络为核心的深度学习模型,设计多尺度并行空洞卷积模块与各向异性复合条状池化模块对遥感图像中各向异性目标进行识别分割。在测试结果中,设计方法对于测试数据集图像分割的可视化效果中能够完整保留标签信息,且全局准确率和平均交并比均明显高于对照组。 展开更多
关键词 深度学习 低照度遥感图像 多尺度RETINEX算法 非线性增强 对比度拉伸 各向异性上下文融合网络为核心 多尺度并行空洞卷积模块 各向异性复合条状池化模块
在线阅读 下载PDF
基于改进YOLO v5s的水下小目标检测算法
16
作者 梁衡 刘儒一 +1 位作者 张典 宋廷强 《青岛科技大学学报(自然科学版)》 2025年第2期122-131,共10页
针对目前水下图像存在图像模糊以及小目标聚集导致水下小目标识别精度低的情况,提出一种基于改进YOLO v5s的水下小目标检测算法。在主干特征提取网络中嵌入卷积注意力模块,强化小目标信息,提高网络模型的特征提取能力。设计了一种改进... 针对目前水下图像存在图像模糊以及小目标聚集导致水下小目标识别精度低的情况,提出一种基于改进YOLO v5s的水下小目标检测算法。在主干特征提取网络中嵌入卷积注意力模块,强化小目标信息,提高网络模型的特征提取能力。设计了一种改进的C3模块C3Swin,在原始C3模块中加入Swin Transformer结构,在不同滑动窗口间进行信息交互,增强了全局信息的提取能力。对原始YOLO v5s的检测层进行重构,增加小目标检测层,提升小目标的检测精度。改进损失函数,使用α-iou对原损失函数进行优化,提升预测框的回归精度。实验结果表明,在URPC水下目标检测数据集中,本工作提出的算法平均精度均值(mAP)为86.9%,相较于原模型提升了2.9%,检测速度为62.7 Hz,优于主流算法,在保证检测速度的同时提升了检测精度。 展开更多
关键词 水下小目标检测 YOLO v5s 卷积注意力模块 Swin Transformer α-iou
在线阅读 下载PDF
VCDG-UNet模型在遥感图像分割中的应用
17
作者 郑海洋 于淼 于晓鹏 《无线电工程》 2025年第1期94-104,共11页
针对遥感图像建筑物的轮廓分割不完整、边界分割模糊和阴影干扰等导致的错误分割问题,提出一种基于VGG16的卷积块注意力深度可分离卷积U-Net网络(VGG16 Convolutional Block Attention and Deep Separable Convolution U-Net,VCDG-UNet... 针对遥感图像建筑物的轮廓分割不完整、边界分割模糊和阴影干扰等导致的错误分割问题,提出一种基于VGG16的卷积块注意力深度可分离卷积U-Net网络(VGG16 Convolutional Block Attention and Deep Separable Convolution U-Net,VCDG-UNet)。为对建筑物特征进行提取,编码器部分模型以具有强大特征提取能力的VGG16作为骨干网络;解码器部分用深度可分离卷积代替普通卷积来减少参数量并融合不同尺度的特征;引入卷积块注意力模块(Convolutional Block Attention Module,CBAM)加入跳跃连接中,使其更有效地从不同尺度的图像中提取上下文信息并提高其对重要区域的关注度;为解决网络训练过程中的梯度消失问题,使用了高斯误差线性单元(Gaussian Error Linear Unit,GELU)。实验结果显示,改进后的网络在WHU和INRIA数据集上的平均交并比(mean Intersection over Union,mIoU)和F1-score分别达到了94.20%、96.83%和89.69%、94.51%,相较于基础模型高出了1.59%、0.76%和2.8%、1.59%。 展开更多
关键词 遥感图像分割 深度学习 U-Net 卷积块注意力模块 高斯误差线性单元
在线阅读 下载PDF
基于改进RT-DETR的遥感图像检测算法
18
作者 白金燕 江涛 +2 位作者 魏玉梅 马珍 张琪 《无线电工程》 2025年第2期334-342,共9页
针对遥感图像目标排列紧密、背景复杂和小目标众多导致检测精度低的问题,提出了一种基于改进实时检测Transformer(Real-Time Detection Transformer, RT-DETR)的遥感图像检测算法。将Mosaic9数据增强应用到遥感数据中,丰富训练数据中场... 针对遥感图像目标排列紧密、背景复杂和小目标众多导致检测精度低的问题,提出了一种基于改进实时检测Transformer(Real-Time Detection Transformer, RT-DETR)的遥感图像检测算法。将Mosaic9数据增强应用到遥感数据中,丰富训练数据中场景和目标的组合,增强模型对不同环境下目标的识别能力。在主干网络中添加卷积块注意力模块(Convolutional Block Attention Module, CBAM),增强复杂背景下目标的关注度和图像特征提取能力,在模型中额外添加一个针对小目标的检测层,使小目标的细节特征更加突出,提升模型对小目标的检测能力。在DSTD舰船遥感数据集和NWPU VHR-10多类别遥感数据集上的实验结果显示,改进后的算法在交并比(Intersection over Union, IoU)阈值为0.5时,平均精度均值(mean Average Precision, mAP)分别达到了94.9%和94.5%,较原始RT-DETR算法分别提升了1%和1.3%,体现了改进算法在遥感图像检测上的有效性和通用性。 展开更多
关键词 目标检测 遥感图像 实时检测Transformer 卷积块注意力模块
在线阅读 下载PDF
基于残差BiLSTM和改进CBAM的航迹关联方法
19
作者 贾燎原 曹伟 +2 位作者 张晓峰 陆翔 周恒亮 《火力与指挥控制》 北大核心 2025年第2期100-106,115,共8页
针对目前智能航迹关联算法关联准确率较低的问题,提出一种由残差网络、双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)与改进的卷积注意力模块(improved convolutional block attention module,ICBAM)结合而成的残差... 针对目前智能航迹关联算法关联准确率较低的问题,提出一种由残差网络、双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)与改进的卷积注意力模块(improved convolutional block attention module,ICBAM)结合而成的残差BiLSTM-ICBAM航迹关联模型。在BiLSTM模型的基础上引入残差网络,增强模型提取航迹上下游特征的同时抑制网络退化问题;加入改进的CBAM注意力模块,分析输入信息与当前航迹特征的相关性并突出关键特征的影响,进而增强局部特征提取能力以及误差跟踪能力;在航迹关联数据上的实验结果表明,残差BiLSTM-ICBAM航迹关联模型比现有方法在准确率、稳定性中表现出了明显的性能优势。 展开更多
关键词 航迹关联 残差网络 双向长短时记忆神经网络 卷积注意力模块
在线阅读 下载PDF
基于逐次变分模态分解和CBAM-ResNet的滚动轴承故障诊断方法
20
作者 陈志刚 陶子纯 +1 位作者 王衍学 史梦瑶 《振动与冲击》 北大核心 2025年第4期298-304,312,共8页
针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBA... 针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBAM-ResNet)的轴承故障诊断方法。首先对轴承振动信号进行SVMD分解成一系列本征模态分量,根据包络熵和峭度融合评价指标选择含故障特征明显的模态分量并重构;将重构信号进行短时傅里叶变换得到时频图像。之后利用CBAM能够自适应捕捉图形特征的特点,把重构信号的时频图像输入CBAM-ResNet模型进行特征提取和故障模式识别。在CBAM-ResNet模型训练过程中,使用迁移学习的方法初始化ResNet模型的参数来提高模型的泛化性。与其他传统模型相比,该研究的分类准确率高达96.68%,具有更强的故障特征提取能力。试验结果表明,CBAM-ResNet模型在变工况环境下也具有较高的识别精度。 展开更多
关键词 故障诊断 滚动轴承 逐次变分模态分解 卷积注意力模块 残差神经网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部