期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟 被引量:6
1
作者 齐建东 谭新新 《林业科学》 EI CAS CSCD 北大核心 2022年第2期1-12,共12页
【目的】分析长白山红松阔叶林净生态系统碳交换量(NEE)的季节性差异及其气象因子响应,在月尺度下揭示气象因子对NEE的动态影响,为调节研究地区的碳收支提供理论指导。同时研究时间卷积神经网络在森林生态系统净碳交换模拟中的应用,探索... 【目的】分析长白山红松阔叶林净生态系统碳交换量(NEE)的季节性差异及其气象因子响应,在月尺度下揭示气象因子对NEE的动态影响,为调节研究地区的碳收支提供理论指导。同时研究时间卷积神经网络在森林生态系统净碳交换模拟中的应用,探索NEE模拟的新方法。【方法】基于长白山温带红松阔叶林通量观测站2007—2010年间的30 min观测数据,分析NEE和输入模型的5种气象因子的季节性差异,并分析5种气象因子与NEE的相关性。使用随机森林模型,计算影响NEE的各因子重要性得分,选择得分较高的5种气象因子:潜热通量、显热通量、冠层上方空气湿度、冠层上方水汽压和净辐射作为NEE模拟的输入;分别构建基于时间卷积神经网络(TCN)、长短期记忆网络(LSTM)、人工神经网络(ANN)、支持向量回归(SVR)和极限学习机(ELM)的5种NEE模型,采用决定系数(R^(2))、平均绝对误差(MAE)和均方根误差(RMSE)评价模型的预测精度和稳定性。【结果】长白山温带红松阔叶林通量观测站NEE全年总量为-74.7773 gCO_(2)·m^(-2)a-1,总体表现为碳汇,但夏季表现为碳汇,冬季表现为碳源;NEE与潜热通量、冠层上方水汽压、净辐射和冠层上方空气湿度均极显著负相关(P<0.0001),和显热通量相关性不显著;TCN模型的RMSE为0.1105 mgCO_(2)·m^(-2)s^(-1),R^(2)为0.8214,RMSE分别比ELM、SVR、ANN和LSTM减少0.0248、0.0224、0.0222和0.0068 mgCO_(2)·m^(-2)s^(-1),R^(2)分别比ELM、SVR、ANN和LSTM增加0.0806、0.0777、0.0686、0.0223;根据5种模型的10次试验结果,计算得到TCN模型RMSE的标准差为0.0004 mgCO_(2)·m^(-2)s^(-1),相比ELM、ANN和LSTM分别减小0.0014、0.0013和0.0002 mgCO_(2)·m^(-2)s^(-1)。【结论】长白山温带红松阔叶林通量观测站的NEE总体表现为碳汇,但存在明显的季节差异;NEE与潜热通量、冠层上方水汽压、冠层上方空气湿度、净辐射极显著负相关(P<0.0001),与显热通量相关性不显著。对于长白山温带红松阔叶林通量观测站的长期NEE预测结果表明,基于TCN的模型不仅预测精度良好,并且具有较强的稳定性,能为时间卷积神经网络在生态模拟领域的应用提供可行性依据。本研究结果可为调节长白山红松阔叶林的碳收支提供理论指导。 展开更多
关键词 时间卷积神经网络 NEE 长白山红松阔叶林
在线阅读 下载PDF
社会-时空图卷积神经网络在行人轨迹预测中的应用
2
作者 蒋宁 吕琪 +2 位作者 徐磊 蔡雪利 王强 《青岛大学学报(工程技术版)》 2024年第4期13-19,共7页
为准确预测自动驾驶汽车受周围环境和物体干扰的行人运动轨迹,更好地捕捉复杂的交互行为,提出一种社会-时空图卷积神经网络(social spatio-temporal graph convolutional neural network, S-STGCNN),将行人间的交互关系建模为图结构,突... 为准确预测自动驾驶汽车受周围环境和物体干扰的行人运动轨迹,更好地捕捉复杂的交互行为,提出一种社会-时空图卷积神经网络(social spatio-temporal graph convolutional neural network, S-STGCNN),将行人间的交互关系建模为图结构,突破了传统聚合方法和应用注意力机制的局限性。通过图卷积神经网络(graph convolutional networks, GCN)与时空卷积网络(temporal convolutional network, TCN)相结合的方法,在单一快照中预测整段行人运动序列。实验结果表明,S-STGCNN在行人轨迹预测上表现更优,最终位移误差降低了20%,参数量降低了88.2%,推理速度提升了48倍。S-STGCNN显著提升了行人轨迹预测的精度和效率,为自动驾驶技术提供理论支持。 展开更多
关键词 自动驾驶 卷积神经网络 时间卷积神经网络 行人轨迹预测
在线阅读 下载PDF
基于实值时间卷积神经网络的功放预失真研究 被引量:3
3
作者 陈景豪 许高明 +1 位作者 刘太君 欧阳贵喜 《微波学报》 CSCD 北大核心 2023年第6期65-69,共5页
为了实现传输速率高达千兆比特每秒(Gbps)的目标,5G通信系统需要更宽的传输带宽和更高的调制度,这些对射频功放的线性度提出了更加苛刻的要求。必须对功放的非线性进行线性化。文中构建了一种基于实值时间卷积神经网络(Real-Valued Temp... 为了实现传输速率高达千兆比特每秒(Gbps)的目标,5G通信系统需要更宽的传输带宽和更高的调制度,这些对射频功放的线性度提出了更加苛刻的要求。必须对功放的非线性进行线性化。文中构建了一种基于实值时间卷积神经网络(Real-Valued Temporal Convolutional Networks,RVTCN)模型的数字预失真器。RVTCN模型利用扩大因果卷积(Dilated Causal Convolution, DCC)提取功放的当前时序信息,把记忆信息存储在残差块(Residual Block,RB)中,不断获取时序特征并保存于网络中。为了验证RVTCN线性化的性能,文中采用了100 MHz带宽的5G NR信号,对中心频率3.5 GHz的Doherty功放进行了预失真线性化实验验证。实验结果表明:该RVTCN模型具有射频功放的动态非线性行为建模能力,其归一化均方误差可达-40 d B;RVTCN预失真器对测试功放的相邻信道功率比(ACPR)改善可达19.5 d B左右。 展开更多
关键词 功率放大器 时间卷积神经网络 数字预失真 非线性 5G
在线阅读 下载PDF
基于AF-BiTCN的弹道中段目标HRRP识别
4
作者 王晓丹 王鹏 +2 位作者 宋亚飞 向前 李京泰 《北京航空航天大学学报》 北大核心 2025年第2期349-359,共11页
针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为... 针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为双向序列;构建BiTCN逐层提取HRRP的双向深层时序特征,并将双向时序特征采用加性策略融合;利用更加稳健的融合特征实现对弹道中段目标的识别,并使用Adam算法优化AF-BiTCN的收敛速度和稳定性。实验结果表明:所提的基于AF-BiTCN的弹道中段目标HRRP识别方法较堆叠选择长短期记忆网络(SLSTM)、堆叠门控循环单元(SGRU)等6种时序方法具有更高的准确率和更快的识别速度,在测试集上达到了96.60%的准确率,并且在噪声数据集上表现出更好的鲁棒性。 展开更多
关键词 双向时间卷积神经网络 弹道目标识别 特征融合 高分辨距离像 滑窗算法
在线阅读 下载PDF
基于深度学习的香菇菌棒生产成本预测模型研究
5
作者 卢翠红 张峰 吴秋兰 《山东农业科学》 北大核心 2025年第1期174-180,共7页
针对香菇菌棒生产成本管控难、成本预测精度低等问题,本研究在深入剖析香菇菌棒生产成本关键影响因素的基础上,提出了基于时间卷积神经网络(TCN)、双向长短期记忆网络(BiLSTM)和注意力(Attention)机制的香菇菌棒生产成本预测模型。首先... 针对香菇菌棒生产成本管控难、成本预测精度低等问题,本研究在深入剖析香菇菌棒生产成本关键影响因素的基础上,提出了基于时间卷积神经网络(TCN)、双向长短期记忆网络(BiLSTM)和注意力(Attention)机制的香菇菌棒生产成本预测模型。首先利用轻量级梯度提升机(LightGBM)筛选出与香菇菌棒生产成本相关的重要特征,降低预测模型的输入维度;然后构建TCN网络与BiLSTM网络对输入数据进行特征提取,并将提取的特征进行融合;最后在上述基础上添加Attention机制,使用全连接层得到最终的香菇菌棒生产成本预测结果。实验结果表明,该模型的预测均方根误差、平均绝对百分比误差、平均绝对误差分别为0.0841、2.2526、0.0738,香菇菌棒生产成本的预测曲线接近真实的曲线,具有良好的预测效果,可以有效满足香菇菌棒生产企业对成本预测的要求。 展开更多
关键词 香菇菌棒 双向长短期记忆网络 时间卷积神经网络 注意力机制 成本预测 深度学习
在线阅读 下载PDF
基于PSO-TCN深度学习模型的新疆台兰河流域洪水预报研究
6
作者 曹彪 刘敏杰 +2 位作者 余其鹰 张廷 马强 《中国防汛抗旱》 2025年第2期74-80,共7页
准确的超前洪水预报有利于提前规划流域防洪措施。通过耦合粒子群算法(PSO)和时间卷积神经网络(TCN)构建新疆台兰河流域PSO-TCN洪水预报模型,并基于台兰河流域1960—2014年实测降雨径流资料,对50场历史洪水进行了模型测试。结果表明,相... 准确的超前洪水预报有利于提前规划流域防洪措施。通过耦合粒子群算法(PSO)和时间卷积神经网络(TCN)构建新疆台兰河流域PSO-TCN洪水预报模型,并基于台兰河流域1960—2014年实测降雨径流资料,对50场历史洪水进行了模型测试。结果表明,相同预见期条件下,PSO-TCN模型预报洪水过程纳什效率系数(NSE)更高、均方根误差(RMSE)和洪峰相对误差(RE)更低,PSO-TCN洪水预报模型在台兰河流域具有更好的适用性和鲁棒性。当预见期超过5h,PSO-TCN模型预报洪峰相对误差仍会超过20%,未来有望融合洪水过程发生机理,进一步提高深度学习模型在洪水预报应用中的泛化能力。研究成果可为流域洪水预报计算提供参考。 展开更多
关键词 洪水预报 深度学习 时间卷积神经网络 粒子群优化算法 PSO-TCN模型 台兰河流域
在线阅读 下载PDF
基于VMD-TCN-GRU模型的水质预测研究 被引量:2
7
作者 项新建 许宏辉 +4 位作者 谢建立 丁祎 胡海斌 郑永平 杨斌 《人民黄河》 CAS 北大核心 2024年第3期92-97,共6页
为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此... 为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此类研究中常见的SVR(支持向量回归)、LSTM(长短期记忆神经网络)、TCN和CNN-LSTM(卷积神经网络-长短期记忆神经网络)这4种模型预测结果对比表明:VMD-TCN-GRU模型能更好挖掘水质数据在短时震荡过程中的特征信息,提升水质预测精度;VMD-TCN-GRU模型的MAE(平均绝对误差)、RMSE(均方根误差)下降,R^(2)(确定系数)提高,其MAE、RMSE、R^(2)分别为0.0553、0.0717、0.9351;其预测性能优越,预测精度更高且拥有更强的泛化能力,可以应用于汾河水质预测。 展开更多
关键词 水质预测 混合模型 变分模态分解 卷积时间神经网络 门控循环单元 时间序列 汾河
在线阅读 下载PDF
基于自适应时序解耦和气象因素动态影响评估的超短期太阳辐照度预测
8
作者 臧海祥 黄海洋 +3 位作者 程礼临 张越 孙国强 卫志农 《太阳能学报》 EI CAS CSCD 北大核心 2024年第11期411-417,共7页
针对太阳辐射序列具有波动性以及受气象因素影响而导致太阳辐照度预测精度降低的问题,提出一种基于滑动窗口变分模态分解(SWVMD)、自适应图卷积网络(AGCN)和四核时间卷积神经网络(QTCN)的超短期太阳辐照度预测模型。首先利用SWVMD对历... 针对太阳辐射序列具有波动性以及受气象因素影响而导致太阳辐照度预测精度降低的问题,提出一种基于滑动窗口变分模态分解(SWVMD)、自适应图卷积网络(AGCN)和四核时间卷积神经网络(QTCN)的超短期太阳辐照度预测模型。首先利用SWVMD对历史辐射序列进行解耦,实时挖掘不同特征尺度的模态分量,然后将数据集重构为图数据,进而利用AGCN动态评估气象因素的影响程度,最后采用QTCN提取融合后特征序列的多尺度时序特征,实现对未来30 min太阳辐照度的预测。实验结果表明,与LSTM、TCN模型和CNN-Bi-LSTM模型相比,所提出的预测模型能有效提升预测精度。 展开更多
关键词 太阳辐照度 深度学习 变分模态分解 卷积神经网络 时间卷积神经网络
在线阅读 下载PDF
基于辐射改进Penman-Monteith模型估算粮食主产区参考作物蒸散量 被引量:1
9
作者 马钊 李鹏程 +1 位作者 刘洪伟 孟静 《节水灌溉》 北大核心 2024年第3期24-33,共10页
为进一步提高Penman-Monteith模型估算参考作物蒸散量(Reference crop evapotranspiration,ET0)的精度,以中国粮食主产区为研究对象,将其划分为温带湿润半湿润地区(THSZ)、温带干旱半干旱地区(TASZ)、暖温带半湿润地区(WTSZ)和亚热带湿... 为进一步提高Penman-Monteith模型估算参考作物蒸散量(Reference crop evapotranspiration,ET0)的精度,以中国粮食主产区为研究对象,将其划分为温带湿润半湿润地区(THSZ)、温带干旱半干旱地区(TASZ)、暖温带半湿润地区(WTSZ)和亚热带湿润地区(SHZ),基于32个气象站点1994-2020年长序列实测逐日气象数据,将猎豹算法(CO)、沙猫算法(SCSO)、野狗算法(DOA)优化的时间卷积神经网络模型(TCN)和3种基于日照时数、3种基于温度的经验模型估算的辐射(R_(s))值与PM模型进行融合,得到改进PM模型。以均方根误差(RMSE)、决定系数(R^(2))、平均绝对误差(MAE)和效率系数(E_(NS))为精度评价体系,找出了粮食主产区不同分区的ET0最优估算模型,结果表明:基于日照时数模型的计算精度要优于温度模型,其中CO-TCN模型在全区内均表现出了较高的精度,在不同分区的RMSE、MAE、R^(2)和E_(NS)中位数取值分别为0.099~0.171 mm/d、0.057~0.111mm/d、0.984~0.998、0.983~0.997,由此可将CO-TCN模型估算的辐射值与PM模型融合,作为标准值用于估算粮食主产区ET0。 展开更多
关键词 粮食主产区 参考作物蒸散量 辐射 Penman-Monteith模型 时间卷积神经网络
在线阅读 下载PDF
一种基于TCN-LGBM的航空发动机气路故障诊断方法 被引量:4
10
作者 吕卫民 孙晨峰 +2 位作者 任立坤 赵杰 李永强 《兵工学报》 EI CAS CSCD 北大核心 2024年第1期253-263,共11页
长时间工作在高温高压、强振动等恶劣气路环境下的航空发动机经常面临部件疲劳、腐蚀和性能退化的问题,且其故障诊断时序逻辑性不强、故障参数耦合较深等特点十分明显,为此提出一种基于时间卷积神经网络(Temporal Convolutional Network... 长时间工作在高温高压、强振动等恶劣气路环境下的航空发动机经常面临部件疲劳、腐蚀和性能退化的问题,且其故障诊断时序逻辑性不强、故障参数耦合较深等特点十分明显,为此提出一种基于时间卷积神经网络(Temporal Convolutional Network,TCN)和轻量级梯度提升机(Light Gradient Boosting Machine,LGBM)的航空发动机气路故障诊断方法。故障诊断分为故障特征提取和分类诊断两个过程:引入TCN框架,在保证故障数据训练时序逻辑的基础上,实现对远层历史信息和当前层信息的特征融合构建,融合通道注意力机制增强了高质量特征的权重;基于LGBM模型实现对特征的快速分类,利用贝叶斯方法实现对模型超参数的快速优化。以基于PROOSIS软件建模的某军用小涵道比涡扇发动机故障仿真数据为例,对6种故障模式进行诊断识别。仿真结果表明了所提方法的有效性;通过与其他模型对比体现了该方法的优越性。 展开更多
关键词 航空发动机 故障诊断 时间卷积神经网络 轻量级梯度提升机 注意力机制
在线阅读 下载PDF
基于DA-TCN-BiGRU的坡面泥石流预测研究
11
作者 韦凯 李青 +1 位作者 姚益 周睿 《现代电子技术》 北大核心 2024年第6期1-8,共8页
为解决当前坡面泥石流预测中存在的多因素数建模问题,并提高预测的精确度,提出一种融合双注意力机制、时间卷积神经网络和双向门控循环单元(DA-TCN-BiGRU)的坡面泥石流风险预测方法。通过模拟平台进行坡面泥石流模拟实验,采集多类传感... 为解决当前坡面泥石流预测中存在的多因素数建模问题,并提高预测的精确度,提出一种融合双注意力机制、时间卷积神经网络和双向门控循环单元(DA-TCN-BiGRU)的坡面泥石流风险预测方法。通过模拟平台进行坡面泥石流模拟实验,采集多类传感器数据得到风险度大小,并以此表征所处的风险阶段。实验结果表明,所提模型短期预测的均方根误差、平均百分比误差和平均绝对百分比误差分别为0.013 59、0.010 407和1.182 64,中期预测的均方根误差、平均百分比误差和平均绝对百分比误差分别为0.019 01、0.015 17和1.729 46,优于其他比较模型。 展开更多
关键词 坡面泥石流 风险预测 双注意力机制 时间卷积神经网络 双向门控循环单元 风险评估方法
在线阅读 下载PDF
基于特征选择策略和TCN的电力负荷预测方法
12
作者 袁文辉 张仰飞 《信息技术》 2024年第4期9-14,21,共7页
电力负荷由于受到多种外部因素影响,具有较大的波动性和随机性,使得高精度的负荷预测十分困难。为有效处理高维特征以提高模型预测精度,提出了一种基于特征选择策略和时间卷积神经网络的电力负荷预测方法。首先,采用基于极端梯度提升树... 电力负荷由于受到多种外部因素影响,具有较大的波动性和随机性,使得高精度的负荷预测十分困难。为有效处理高维特征以提高模型预测精度,提出了一种基于特征选择策略和时间卷积神经网络的电力负荷预测方法。首先,采用基于极端梯度提升树的特征选择策略,深度挖掘与负荷关联性强的特征作为预测模型的输入;其次,构建基于时间卷积神经网络(TCN)的电力负荷预测模型,对特征选择后的负荷数据进行预测;最后,采用某市真实负荷数据进行仿真分析。结果表明,文中所提方法与传统预测方法相比,具有更高的预测精度。 展开更多
关键词 多维特征 负荷预测 极端梯度提升树 特征选择策略 时间卷积神经网络
在线阅读 下载PDF
基于充电健康因子优化和数据驱动的锂电池剩余使用寿命预测
13
作者 段慧云 夏威 +2 位作者 邵杰 汪洋青 李彬 《汽车技术》 CSCD 北大核心 2024年第1期20-26,共7页
针对因选取的健康因子不理想导致锂电池剩余使用寿命(RUL)预测精度不高的问题,提出了一种基于充电健康因子优化和数据驱动的电池RUL预测方法,首先提取电池充电过程中的各种健康因子,再使用两步最大信息系数法优化特征子集得到优化的健... 针对因选取的健康因子不理想导致锂电池剩余使用寿命(RUL)预测精度不高的问题,提出了一种基于充电健康因子优化和数据驱动的电池RUL预测方法,首先提取电池充电过程中的各种健康因子,再使用两步最大信息系数法优化特征子集得到优化的健康因子,最后使用带有注意力机制的时间卷积神经网络(ATCN)预测电池的剩余使用寿命,通过对美国国家航空航天局(NASA)锂电池老化数据的研究,验证了所提出的锂电池RUL预测框架,并与简单循环神经网络(SimpleRNN)、长短期记忆(LSTM)神经网络和门控循环单元(GRU)神经网络等建模方法进行比较,结果表明,所提出的方法在各数据集上均取得了最优的预测结果。 展开更多
关键词 锂离子电池 剩余使用寿命 两步最大信息系数 时间卷积神经网络 注意力机制
在线阅读 下载PDF
基于车辆响应的桥梁区段轨道高低不平顺快速估计算法
14
作者 支洋 《铁道建筑》 北大核心 2024年第10期20-25,共6页
基于高速铁路轨检数据,采用Pearson相关系数及相干函数,研究桥梁区段轨道高低不平顺与车辆响应的相关关系。利用贝叶斯优化(Bayesian Optimization,BO)对时间卷积神经(Temporal Convolutional Neural,TCN)网络进行改进,确定最佳感受野大... 基于高速铁路轨检数据,采用Pearson相关系数及相干函数,研究桥梁区段轨道高低不平顺与车辆响应的相关关系。利用贝叶斯优化(Bayesian Optimization,BO)对时间卷积神经(Temporal Convolutional Neural,TCN)网络进行改进,确定最佳感受野大小,提出基于贝叶斯优化的时间卷积神经(BO-TCN)网络算法,利用该算法对轨道高低不平顺进行估计,并与传统循环神经网络算法的准确率及计算效率进行对比。结果表明:车体垂向加速度能够反映桥梁跨长及其2~4倍频(32、16、10、8 m)和轨道板长及其2倍频(6.45、3.30 m)引起的周期性轨道高低不平顺;以车体垂向加速度作为BO-TCN的输入特征,可实现3 m以上波长轨道高低不平顺的准确估计;相比长短期记忆(Long Short Term Memory,LSTM)网络和门控循环单元(Gated Recurrent Unit,GRU),利用BO-TCN算法估计的轨道高低不平顺与实测值吻合度更高,且训练速度可达LSTM、GRU的20倍以上。 展开更多
关键词 高速铁路 贝叶斯优化 时间卷积神经网络 车辆响应 轨道不平顺 车体垂向加速度
在线阅读 下载PDF
基于TCN和高斯过程残差建模学习的净负荷概率预测方法
15
作者 赵洪山 吴雨晨 +1 位作者 潘思潮 温开云 《太阳能学报》 CSCD 北大核心 2024年第12期588-595,共8页
提出一种基于时间卷积神经网络(TCN)和高斯过程(GP)的净负荷预测方法,可提供精确的点预测和概率预测结果。首先,TCN被用来提取大量的历史数据中净负荷的变化规律,TCN优秀的时间序列建模能力可发现净负荷预测任务输入输出之间的复杂映射... 提出一种基于时间卷积神经网络(TCN)和高斯过程(GP)的净负荷预测方法,可提供精确的点预测和概率预测结果。首先,TCN被用来提取大量的历史数据中净负荷的变化规律,TCN优秀的时间序列建模能力可发现净负荷预测任务输入输出之间的复杂映射关系。然后,为高斯过程设计一个复合核函数对TCN的预测残差进行建模学习,该过程可在TCN预测的基础上进一步提升点预测的精度,同时也可利用高斯过程的不确定性量化能力对净负荷预测的不确定性进行量化。最后,通过在真实净负荷数据集上和大量先进的模型进行比较,验证该文提出方法的有效性。 展开更多
关键词 预测模型 光伏出力 概率密度函数 残差神经网络 时间卷积神经网络
在线阅读 下载PDF
基于时序建模的卫星故障检测方法 被引量:6
16
作者 杨凯飞 韩笑冬 +3 位作者 吕原草 徐楠 宫江雷 李翔 《中国空间科学技术》 CSCD 北大核心 2023年第2期93-102,共10页
为解决当前卫星故障检测面临的依赖规则库、多元特征融合不足以及数据正负样本分布不均衡等问题,从卫星数据的时序特性出发,提出基于时序建模的卫星故障检测方法与半监督模型,实现卫星数据规律的有效挖掘与数据驱动的故障检测。考虑卫... 为解决当前卫星故障检测面临的依赖规则库、多元特征融合不足以及数据正负样本分布不均衡等问题,从卫星数据的时序特性出发,提出基于时序建模的卫星故障检测方法与半监督模型,实现卫星数据规律的有效挖掘与数据驱动的故障检测。考虑卫星数据间的时序关联,提出基于长短期记忆神经网络的卫星故障检测方法,并引入滑动窗口机制实现卫星数据的有效预测与故障检测。考虑卫星数据多元特征参数间的关联关系,引入时间卷积和自编码器神经网络,同时建模不同时刻、多元特征参数间的依赖关系,实现融合多元特征参数进行卫星故障的有效检测。以某型号卫星电源分系统为实验对象,仿真结果表明,所提算法和模型在关键指标方面优于BP神经网络等传统故障检测方法和模型。 展开更多
关键词 故障检测 时间卷积神经网络 自编码器 长短期记忆神经网络 时序建模 半监督学习
在线阅读 下载PDF
基于Autoencoder-TCN的航空发动机排气温度预测 被引量:2
17
作者 孔晨亦 李学仁 杜军 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2020年第5期55-61,共7页
针对目前航空发动机排气温度预测模型精度不高、传统RNN类神经网络对飞行数据时间维度信息挖掘不充分的问题,提出了一种结合自编码器Autoencoder和时间卷积神经网络TCN的航空发动机排气温度预测模型。首先通过Autoencoder方法从飞行数... 针对目前航空发动机排气温度预测模型精度不高、传统RNN类神经网络对飞行数据时间维度信息挖掘不充分的问题,提出了一种结合自编码器Autoencoder和时间卷积神经网络TCN的航空发动机排气温度预测模型。首先通过Autoencoder方法从飞行数据中提取与排气温度相关的特征,以降维后的特征作为输入,建立TCN网络深度学习模型,以航空发动机排气温度作为输出,充分挖掘飞行数据的时间维度信息,从而提高模型精度。最后选取真实飞行数据进行实验,结果表明,与BP、LSTM神经网络模型相比,该模型的平均绝对百分比误差由13.035%和9.593%降低至3.369%,有效提高了模型预测精度。 展开更多
关键词 航空发动机 排气温度 自编码器 时间卷积神经网络
在线阅读 下载PDF
基于TCN-MHA的短期光伏功率预测 被引量:1
18
作者 孙永叡 任晓颖 +2 位作者 张飞 高鹭 郝斌 《科技创新与应用》 2023年第29期8-12,共5页
光伏发电的波动性和随机性对电力系统安全稳定运行具有不良影响,为提高日前短期光伏功率预测精度进而提升光伏电站运营及电网调度效率,提出一种基于时间卷积神经网络(TCN)结合多头注意力机制(MHA)的光伏功率预测方法。首先TCN接收数据,... 光伏发电的波动性和随机性对电力系统安全稳定运行具有不良影响,为提高日前短期光伏功率预测精度进而提升光伏电站运营及电网调度效率,提出一种基于时间卷积神经网络(TCN)结合多头注意力机制(MHA)的光伏功率预测方法。首先TCN接收数据,利用膨胀卷积的结构改变感受野范围,利用因果卷积的设置提取光伏数据的时序特征;经过升维后输入MHA中,选择合适的多头个数,得到多个子空间,将输入特征进行不同维度的空间映射,进一步分配注意力权重;最后降维输入全连接层结合得到的特征信息对次日24 h的光伏功率进行预测。实验在实际光伏场站数据上进行,结果表明,所提模型的预测精度优于对比模型。 展开更多
关键词 光伏发电 短期功率预测 深度学习 时间卷积神经网络 注意力机制
在线阅读 下载PDF
基于TCN-Attention模型的多变量黄河径流量预测 被引量:10
19
作者 王军 高梓勋 单春意 《人民黄河》 CAS 北大核心 2022年第11期20-25,共6页
针对河流径流量变化受到众多因素影响,具有随机性和非线性的特征,难以对其精确预测的问题,基于黄河花园口水文站2008—2012年日均流量、日降水量、日均含沙量数据,提出一种结合时间卷积神经网络(TCN)和注意力(Attention)机制的多变量TCN... 针对河流径流量变化受到众多因素影响,具有随机性和非线性的特征,难以对其精确预测的问题,基于黄河花园口水文站2008—2012年日均流量、日降水量、日均含沙量数据,提出一种结合时间卷积神经网络(TCN)和注意力(Attention)机制的多变量TCN-Attention模型,对花园口水文站日均流量进行预测,并选取LSTM模型和TCN模型进行预测对比实验。结果表明,TCN模型和TCN-Attention模型的预测性能整体优于LSTM模型;Attention机制可以通过调整特征向量权重提升TCN模型的预测性能,与TCN模型相比,TCN-Attention模型的MAE、RMSE、MAPE值分别降低了20.25%、24.90%、24.39%;TCN-Attention模型具有较优的泛化性能,可以提升日均流量预测精度。 展开更多
关键词 日均流量预测 时间卷积神经网络 Attention机制 花园口水文站
在线阅读 下载PDF
基于改进组合深度学习模型的大坝位移预测研究 被引量:1
20
作者 任传栋 王志真 +2 位作者 刘淑萍 刘洪伟 侯龙潭 《水电能源科学》 北大核心 2023年第10期100-103,61,共5页
大坝位移可直接影响大坝的质量和运行安全,为找出大坝位移的合理预测模型,以时间卷积神经网络模型为基础(TCN),采用遗传算法对麻雀搜索算法(SSA)、灰狼算法(GWO)和蝙蝠算法(BA)三种仿生算法进行改进,得到MSSA、MGWO、MBA三种优化算法,... 大坝位移可直接影响大坝的质量和运行安全,为找出大坝位移的合理预测模型,以时间卷积神经网络模型为基础(TCN),采用遗传算法对麻雀搜索算法(SSA)、灰狼算法(GWO)和蝙蝠算法(BA)三种仿生算法进行改进,得到MSSA、MGWO、MBA三种优化算法,并引入深度置信网络模型(DBN)构建了D-MSSA-TCN、D-MGWO-TCN、D-MBA-TCN三种组合赋权模型,以均方根误差、决定系数、平均绝对误差、效率系数和GPI指数为精度指标体系,结果表明在三种优化仿生算法中,MSSA算法的运行效率及精度最高,三种组合模型的精度显著高于其余模型,其中D-MSSA-TCN模型在所有模型中精度最高,可推荐用于估算坝体位移。 展开更多
关键词 坝体位移 时间卷积神经网络 麻雀搜索算法 遗传算法 深度置信网络模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部