期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOX算法的X射线图像违禁品检测方法 被引量:2
1
作者 袁金豪 张南峰 +1 位作者 阮洁珊 高向东 《激光技术》 CAS CSCD 北大核心 2023年第4期547-552,共6页
为了实现自动检测X射线图像中的违禁品,解决相互遮挡、目标相近和小目标违禁品检测难的问题,提出一种基于改进的你只观察一次(YOLOX)算法的X射线图像违禁品检测方法。首先在YOLOX的主干网络低层中引入使用大核注意力构建的空间注意力,... 为了实现自动检测X射线图像中的违禁品,解决相互遮挡、目标相近和小目标违禁品检测难的问题,提出一种基于改进的你只观察一次(YOLOX)算法的X射线图像违禁品检测方法。首先在YOLOX的主干网络低层中引入使用大核注意力构建的空间注意力,提取低层特征图的远距离依赖信息和纹理信息,之后在主干网络的中层和高层增加卷积块的注意力模块以增强感兴趣区域信息并抑制无用信息;该方法在公开的安全检查X射线数据集上进行实验,同时为改善模型的鲁棒性,在训练前70个周期使用Mosaic数据增强方法。结果表明,改进的模型较基本模型增加少量的参数和计算量,均值平均精度增加2.45%,提升到87.88%,平均推理速率为58.5 frame/s。该研究为即时自动检测X射线图像中违禁品提供了有益的参考。 展开更多
关键词 X射线光学 违禁品检测 YOLOX算法 大核注意力 空间注意力 卷积块的注意力模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部