期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
基于WGAN-GP和高效卷积块注意力机制IPOA-ICNN的变压器故障诊断
1
作者 鲍克勤 谈浩冬 《水电能源科学》 北大核心 2024年第10期190-195,共6页
针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯... 针对目前变压器故障诊断采集到的故障样本存在数据不平衡、特征信息提取不足的问题,提出了一种基于数据增强型和高效卷积块注意力机制(ECBAM)优化一维改进卷积神经网络(1D-ICNN)的变压器故障诊断方法。首先,建立一个基于Wasserstein梯度惩罚生成对抗网络(WGAN-GP),对不平衡的变压器数据样本进行训练以生成合成样本,用于数据增强,并采用方差分析法选取关联性强的气体特征参量;其次,使用残差和高效卷积块注意力机制模块对重构的平衡样本进行更为细节的特征提取,以实现故障诊断网络的分类;最后,利用改进的鹈鹕优化算法(IPOA)对ICNN参数进行寻优。算例对比分析表明,所提算法的故障诊断性能具备更高的精确度和稳定性,验证了所提模型故障诊断分类性能的有效性。 展开更多
关键词 变压器故障诊断 数据增强 高效卷积注意力机制 鹈鹕优化算法
在线阅读 下载PDF
基于集成改进卷积注意力块的SAR图像目标分类算法 被引量:1
2
作者 孙靖森 李宗豫 +3 位作者 杨森 钟芝怡 艾加秋 史骏 《海军航空大学学报》 2024年第4期445-452,共8页
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问... 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像中,目标的轮廓和细节通常比较复杂。传统的卷积神经网络(Convolutional Neural Network,CNN)只使用单一均值参数进行无差别的特征提取,不能很好地区分SAR特征之间的差异。为了解决此问题,文章提出了1种基于集成改进卷积注意力块(Improved Convolutional Block Attention Module,ICBAM)的SAR图像目标分类算法ICBAM_CNN。首先,该模块通过引入方差参数至传统CBAM模块中,设计了1种改进的CBAM注意力机制,有助于分类识别网络更好地学习SAR图像不同目标卷积层输出与通道注意力之间的差异信息,提升不同SAR目标特征的可分离性;然后,ICBAM设计了1种中心坐标注意力机制,能更好地捕捉SAR图像中目标的中心分布特征,有效抑制杂波对SAR目标分类影像的干扰;最后,为了提高效率,将改进后的ICBAM模块集成到CNN网络中,实现SAR图像目标分类。ICBAM_CNN深度融合了SAR图像目标的多层级特征,提升了SAR目标特征的可分离性,可实现SAR图像目标的高精度、高效率识别分类。通过MSTAR数据集进行实验,结果表明,相比于传统CBAM方法,改进ICBAM方法的精确率提升了2.44%,召回率提升了2.24%,F1-score提升了2.34%。 展开更多
关键词 SAR图像目标分类 改进卷积注意力 集成Icbam的CNN网络 中心坐标注意力机制 多层级特征融合
在线阅读 下载PDF
基于注意力机制和迁移学习的服装分类方法 被引量:1
3
作者 陈金广 黄晓菊 马丽丽 《西安工程大学学报》 CAS 2024年第3期109-116,共8页
针对服装图像分类效率低、准确率不高等问题,提出了一种基于注意力机制和迁移学习的服装图像分类方法。主要采用预训练的ResNet50网络模型在服装数据集上进行迁移学习,以降低对数据集的依赖,并减少网络训练时间;通过几何变换和颜色抖动... 针对服装图像分类效率低、准确率不高等问题,提出了一种基于注意力机制和迁移学习的服装图像分类方法。主要采用预训练的ResNet50网络模型在服装数据集上进行迁移学习,以降低对数据集的依赖,并减少网络训练时间;通过几何变换和颜色抖动2种数据增强手段处理数据集,提高模型的泛化能力;以ResNet50为基础网络,加入卷积注意力机制模块(convolutional block attention module, CBAM),依次从通道和空间2个维度提高对服装不同区域的关注度,增强了特征表达能力。在CD和IDFashion两类背景干扰信息不同的数据集上进行验证,实验结果表明:所提出的模型能够提取更多服装特征信息,在IDFashion数据集的平均分类准确率为95.60%,分别高于ResNet50、ResNet50+STN和ResNet50+ECA模型6.65%、6.69%、6.62%,一定程度上提高了服装图像分类的准确率和效率。 展开更多
关键词 服装图像分类 ResNet50 卷积注意力机制模块(cbam) 注意力机制 迁移学习
在线阅读 下载PDF
基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究 被引量:3
4
作者 冯新伟 黄宇祥 王忠立 《铁道技术监督》 2023年第4期16-24,共9页
接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(... 接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(convolutional block attention module,CBAM)和双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)的接触网支持装置检测方法。在YOLO v5s网络模型基础上,该方法通过CBAM增强接触网支持装置的特征提取,结合BiFPN,实现不同零部件分辨率特征图的融合。利用4C装置获得的图像数据集,开展验证试验。试验结果表明,相对YOLO v5s网络模型,融合CBAM和BiFPN的接触网支持装置检测方法,网络平均精度mAP@0.5提高2.12%;能显著提升小目标检测效果,提高定位的准确性和稳定性,对接触网状态的智能分析有重要意义。 展开更多
关键词 接触网 支持装置 检测方法 卷积注意力模块 双向特征金字塔网络
在线阅读 下载PDF
基于注意力机制和Mogrifier LSTNet的道路交通占有率预测
5
作者 秦喜文 潘星宇 +2 位作者 张斯琪 石红玉 董小刚 《长春工业大学学报》 CAS 2024年第3期199-207,共9页
提出一种改进的LSTNet深度学习框架用于交通占有率数据预测。采用不同大小的卷积核来捕捉时间序列数据中不同时间范围内的模式和趋势,并融合CBAM注意力机制可以在通道维度和空间维度上自适应地调整特征的权重。通过引入Mogrifier机制多... 提出一种改进的LSTNet深度学习框架用于交通占有率数据预测。采用不同大小的卷积核来捕捉时间序列数据中不同时间范围内的模式和趋势,并融合CBAM注意力机制可以在通道维度和空间维度上自适应地调整特征的权重。通过引入Mogrifier机制多次迭代交替更新LSTM的输入门和遗忘门的权重,以更好地捕捉序列数据中的长期依赖关系。而AR模型充分考虑了数据集的自相关性帮助模型更好地理解历史信息。实验结果表明,提出的模型相对绝对值误差为0.3497,明显优于其他模型,能够有效提高交通占有率的准确预测。 展开更多
关键词 LSTNet模型 卷积神经网络 cbam注意力机制 Mogrifier LSTM 交通占有率预测
在线阅读 下载PDF
引入卷积块注意力模块的YOLOv5网络在地铁车辆一系弹簧断裂检测中的应用 被引量:1
6
作者 江现昌 邹庆春 +1 位作者 李翔泽 王静 《铁道技术监督》 2023年第10期29-33,共5页
作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的... 作为地铁车辆关键部件的一系弹簧会发生断裂,威胁列车运行安全。由于一系弹簧断裂的位置、形状不同,并且断裂位置常常被遮挡,使得采用目标检测方法检测时,目标面积较小。对于小目标,采用的基于深度学习的目标检测方法检测难以达到好的效果。针对这一问题,在YOLOv5网络的基础上加以改进,加入更小的初始检测锚框,并且在主干网络加入空间和通道注意力模块。对比试验结果表明,改进后平均准确率提高3%,有效提高了小目标的检测能力。 展开更多
关键词 地铁动车组 转向架 一系弹簧 YOLOv5算法 卷积注意力模块 注意力机制 目标检测
在线阅读 下载PDF
基于注意力机制的卷积神经网络人脸表情识别 被引量:5
7
作者 亢洁 李思禹 《陕西科技大学学报》 CAS 2020年第4期159-165,171,共8页
现有的卷积神经网络规模越来越大,导致参数量过大,结构不够轻量,并且现有的网络难以识别人脸表情的细微变化,不能对人脸表情特征进行精确提取,表情识别性能有待提高.针对以上问题,提出了一种基于注意力机制的卷积神经网络表情识别方法.... 现有的卷积神经网络规模越来越大,导致参数量过大,结构不够轻量,并且现有的网络难以识别人脸表情的细微变化,不能对人脸表情特征进行精确提取,表情识别性能有待提高.针对以上问题,提出了一种基于注意力机制的卷积神经网络表情识别方法.该方法设计了一种新的网络结构,网络在卷积层的基础上增加了残差恒等块,同时引入注意力模块(Spatial Group-wise Enhance module,SGE),有效缓解了网络的过拟合现象,丰富了人脸表情特征学习,并利用全局特征和局部特征的相似性来指导语义特征的空间分布,使每个特征组自主增强人脸表情的特征学习.该网络结构较为轻量,参数量较少.在RAF-DB和CK+数据集上的实验结果表明,该方法有效改善了人脸表情识别的性能. 展开更多
关键词 卷积神经网络 人脸表情识别 注意力机制 残差恒等
在线阅读 下载PDF
基于注意力机制的轻量级矿井钢丝绳断丝检测算法研究
8
作者 方旭东 于正 +2 位作者 杨发展 周攀搏 袁广振 《中国煤炭》 北大核心 2024年第8期152-164,共13页
立井提升系统作为煤矿生产中的主要运输设备,其核心构件钢丝绳常因工作负荷大、受到腐蚀、磨损等原因而产生断丝引发事故。传统的立井提升机钢丝绳检测算法存在效率低、劳动强度大、智能化程度差和准确率低等问题。基于此,提出一种改进Y... 立井提升系统作为煤矿生产中的主要运输设备,其核心构件钢丝绳常因工作负荷大、受到腐蚀、磨损等原因而产生断丝引发事故。传统的立井提升机钢丝绳检测算法存在效率低、劳动强度大、智能化程度差和准确率低等问题。基于此,提出一种改进YOLOv5s模型,并基于改进的模型进行矿井钢丝绳断丝检测。首先,设计Swiener滤波算法进行钢丝绳图像运动模糊修复,抑制噪声干扰;其次,在特征提取阶段,引入RFC3轻量化模块降低模型可训练参数,提升钢丝绳检测速度;第三,提出CBAM R注意力机制,增强模型对小断口断丝的检测能力;最后,引入Focal EIoU损失函数,提高模型对小断口断丝的检测精度并加速模型收敛。研究结果表明:所提出的基于注意力机制矿用钢丝绳断丝检测算法(CTR YOLO)可以更好地满足实际应用需求,减少了误检、漏检导致的人力成本浪费及安全事故的发生。 展开更多
关键词 钢丝绳检测 YOLOv5s模型 Swiener滤波算法 cbam R注意力机制 轻量化模块
在线阅读 下载PDF
融合残差和卷积注意力机制的U-Net网络高分影像道路提取 被引量:5
9
作者 张亚宁 张春亢 +1 位作者 王朝 游晨宇 《航天返回与遥感》 CSCD 北大核心 2023年第3期119-132,共14页
针对在高分辨率遥感影像中因道路特征模糊或“同谱异物”现象影响,出现局部道路提取缺失和提取错误的问题,提出一种融合残差和卷积注意力机制的U-Net网络高分影像道路提取方法。首先,以U-Net网络为基础,加入改进的残差模块缓解网络训练... 针对在高分辨率遥感影像中因道路特征模糊或“同谱异物”现象影响,出现局部道路提取缺失和提取错误的问题,提出一种融合残差和卷积注意力机制的U-Net网络高分影像道路提取方法。首先,以U-Net网络为基础,加入改进的残差模块缓解网络训练过程中易出现的网络性能退化问题;然后,嵌入卷积注意力机制模块加强对道路细节特征的深度表征能力;最后通过几何变换对数据集进行合理扩充,增强网络泛化能力。在公开数据集马塞诸塞州数据集(MassachusettsRoadsDataset)和DeepGlobe道路数据集上对模型进行测试,实验结果表明:文章提出的方法在两个数据集上整体精度分别达到97.02%和98.26%,相比其他模型具有更好的提取效果,对道路特征的深度表征性更强,抗干扰性较好,有效改善了道路提取中出现的错提、漏提现象,显著提高了道路提取的精度和完整性。 展开更多
关键词 道路提取 残差模块 卷积注意力机制 高分辨率遥感影像
在线阅读 下载PDF
一种注意力机制优化方法及硬件加速设计 被引量:2
10
作者 王莹 王晶 +2 位作者 高岚 吕旭 张伟功 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1021-1029,共9页
针对注意力机制在卷积神经网络的应用过程中无法避免的计算量增大、延迟增加问题,本文提出一种优化后的CBAM(Convolutional Block Attention Module)算法模型,并进行了硬件设计实现.论文基于传统CBAM模型结构,分析算法内部隐藏的潜在问... 针对注意力机制在卷积神经网络的应用过程中无法避免的计算量增大、延迟增加问题,本文提出一种优化后的CBAM(Convolutional Block Attention Module)算法模型,并进行了硬件设计实现.论文基于传统CBAM模型结构,分析算法内部隐藏的潜在问题,设计更加符合注意力重要性参数提取初衷的算法模型;同时,通过计算过程优化,减少数据计算量、对算子进行最大并行组合;利用FPGA(Field Programmable Gate Array)可设计高效灵活并行阵列的优势,为改进后的CBAM算法设计一种硬件加速引擎结构.实验结果表明,与传统CBAM机制相比,改进后的注意力机制可以保持与原有算法模型几乎相同的精度,部署在FPGA的硬件加速计算引擎以180 MHz工作频率进行推理实验,经分析可得,本文提出的设计方案在同等硬件资源条件下,针对注意力机制电路可实现10.2%的计算速度提升,针对VGG16网络模型可实现4.5%的推理速度提升. 展开更多
关键词 注意力机制 cbam 卷积神经网络 FPGA 硬件加速器
在线阅读 下载PDF
基于3D注意力残差的井场偷油行为识别算法
11
作者 张岩 肖坤 +1 位作者 汪靖哲 张林军 《吉林大学学报(信息科学版)》 2024年第6期1090-1099,共10页
由于井场偷油现象是影响油田的安全生产与稳定运营的重要问题,而目前行为识别方法较少关注井场偷油检测的需求,且在对井场偷油目标进行特征识别过程中通常存在局限。为此,提出一种基于3D注意力残差的井场偷油行为识别算法。该网络由多... 由于井场偷油现象是影响油田的安全生产与稳定运营的重要问题,而目前行为识别方法较少关注井场偷油检测的需求,且在对井场偷油目标进行特征识别过程中通常存在局限。为此,提出一种基于3D注意力残差的井场偷油行为识别算法。该网络由多个三维注意力残差块组成,通过在每个残差块中嵌入通道和时空注意力模块,获取更多的特征判别信息,以增强模型对重要特征的关注。在井场偷油行为数据集上对算法的有效性进行验证,实验结果表明,相较同类算法,该方法具有更高的识别准确率,可为油田井场偷油行为自动检测的实际应用提供参考。 展开更多
关键词 井场偷油 三维卷积 行为识别 残差模块 注意力机制
在线阅读 下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络 被引量:1
12
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
在线阅读 下载PDF
基于EM自注意力残差的图像超分辨率重建网络
13
作者 黄淑英 胡瀚洋 +2 位作者 杨勇 万伟国 吴峥 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期388-397,共10页
基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注... 基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注意力残差的图像超分辨率重建网络。该网络通过改进基础残差块,构建特征增强残差块,以更好地复用残差块中所提取的特征。为增加特征信息在空间上的相关性,引入EM自注意力机制,构建EM自注意力残差模块来增强模型中每个模块的特征提取能力,并通过级联EM自注意力残差模块来构建整个模型的特征提取结构。所获得的特征图通过上采样的图像重建模块获得重建的高分辨率图像。将所提方法与主流方法进行实验对比,结果表明:所提方法在5个流行的SR测试集上能够取得较好的主观视觉效果和更优的性能指标。 展开更多
关键词 超分辨率重建 注意力机制 期望最大化 特征增强残差 EM自注意力残差模块
在线阅读 下载PDF
基于全局金字塔和注意力机制的双流网络结构 被引量:3
14
作者 岳帆 谭勇 +3 位作者 黄仕建 侯怡冉 陈清明 马欢 《信息技术与信息化》 2023年第3期188-192,共5页
人体行为识别是计算机视觉中最具吸引力和实践性的研究领域之一,近年来,双流卷积神经网络因其可以同时捕获行为的空间信息和运动信息来进行人体行为的识别而越发的流行。然而,现有的基于双流卷积神经网络的行为识别方法的卷积方式无法... 人体行为识别是计算机视觉中最具吸引力和实践性的研究领域之一,近年来,双流卷积神经网络因其可以同时捕获行为的空间信息和运动信息来进行人体行为的识别而越发的流行。然而,现有的基于双流卷积神经网络的行为识别方法的卷积方式无法全面的捕获相邻光流帧之间的运动信息和边缘的表观信息。为了解决这一问题,提出了一种利用全局特征金字塔和空间注意模块的来识别人类行为的双流网络结构。首先,在时间流提出了一个主要由卷积编码器和全局多头自注意(global multi-head self attention,GMSA)机制组成的全局特征金字塔结构.较小的卷积核在早期阶段捕获低维度特性,而较大的卷积核在卷积编码器后捕获其高维特性。而全局多头注意力则捕获全局的运动信息。其次,设计了一个空间注意模块。通过使用平均池化操作来聚合特征映射的空间信息来生成一维映射来表示空间上的平均合并特征,然后经过3*3的卷积核进行卷积来对RGB图像的边缘表观信息进行提取。最后,利用长短期记忆(long short-term memory,LSTM)来提取密集光流中的时间序列信息。在数据集UCF101、HMDB51上进行实验,实验表明,与其它基于深度学习的方法相比,具有一定的优势。 展开更多
关键词 人体行为识别 双流网络 卷积编码器 全局多头自注意机制 空间注意力模块
在线阅读 下载PDF
基于注意力机制的碳酸盐岩储层岩相识别方法 被引量:1
15
作者 曾丽丽 孟凡月 +2 位作者 汤华贝 牛艺晓 汤敏 《测井技术》 CAS 2022年第3期294-303,共10页
岩相识别是储层评价和油藏描述等的基础环节,碳酸盐岩储层具有非均质性强、孔隙结构复杂等特点,给岩相识别带来了挑战。融合卷积神经网络(CNN)和注意力机制开发了一种新型网络框架,根据各种测井数据之间的相关性实现储层岩相的自动识别... 岩相识别是储层评价和油藏描述等的基础环节,碳酸盐岩储层具有非均质性强、孔隙结构复杂等特点,给岩相识别带来了挑战。融合卷积神经网络(CNN)和注意力机制开发了一种新型网络框架,根据各种测井数据之间的相关性实现储层岩相的自动识别。该框架包括特征注意力(FAtt)模块和CNN模块,FAtt模块根据识别目标与各种测井数据之间的相关性自动提取关键特征,CNN模块捕获各个测井序列之间的空间信息,两者结合有效提高了模型的岩相识别精度。基于碳酸盐岩非均质储层的实验表明,相比于单一的CNN模型,提出的模型岩相识别精度提高了9%。该模型为储层测井评价提供了一种经济可靠的替代方案,为地质研究与人工智能结合提供了快速有效的岩相数据。 展开更多
关键词 岩相识别 注意力机制 卷积神经网络模块 特征注意力模块 碳酸盐岩储层
在线阅读 下载PDF
融合改进CBAM机制和ResNet网络的肺炎CT图像分类研究
16
作者 罗声平 《信息技术与信息化》 2024年第4期50-53,共4页
为快速准确地对正常肺部、普通肺炎、新冠病毒肺炎CT图像进行识别分类,提出了一种融合改进的卷积块注意力模块(convolutional block attention module,CBAM)机制和ResNet18网络的新模型。对CBAM中的多层感知机(multilayer perceptron,M... 为快速准确地对正常肺部、普通肺炎、新冠病毒肺炎CT图像进行识别分类,提出了一种融合改进的卷积块注意力模块(convolutional block attention module,CBAM)机制和ResNet18网络的新模型。对CBAM中的多层感知机(multilayer perceptron,MLP)进行升维改进,放大肺部CT图像关键特征;以ResNet18作为基础模型,将改进的CBAM机制融入ResNet模块中,以加强对关键细节特征的提取,并将AlphaDropout和SeLU激活函数融入网络中,防止其网络的过拟合化,加速模型收敛效果。通过混淆矩阵计算得出模型的准确率、精确率、召回率、F1分数分别达到了99.33%、99.34%、99.33%和0.9845,相比改进前的ResNet18模型分别提高了4.23%、4.88%、4.20%、0.042,且均高于GoogLeNet、ResNet50和Xception对照模型。研究结果表明,改进的CBAM-ResNet18模型对肺部CT图像具有良好的识别结果。 展开更多
关键词 肺炎CT图像 残差网络 卷积注意力模块 多层感知机 激活函数
在线阅读 下载PDF
基于SWT与改进卷积神经网络的轴承故障诊断 被引量:2
17
作者 龚俊 张月义 +1 位作者 陈思戢 刘靖楠 《现代电子技术》 北大核心 2024年第6期68-74,共7页
针对传统轴承故障诊断依赖专家经验且存在时频特征提取效果不佳,导致故障诊断效率和精度较低的问题,提出一种基于同步压缩小波变换(SWT)与改进卷积神经网络(CNN)的轴承故障诊断模型(SICNN)。首先,将一维的非平稳轴承振动信号通过SWT转... 针对传统轴承故障诊断依赖专家经验且存在时频特征提取效果不佳,导致故障诊断效率和精度较低的问题,提出一种基于同步压缩小波变换(SWT)与改进卷积神经网络(CNN)的轴承故障诊断模型(SICNN)。首先,将一维的非平稳轴承振动信号通过SWT转换为高频率表达的二维时频图像,作为卷积神经网络的输入;然后,引入SRM对提取的特征进行风格池化与融合,调整卷积通道合适的特征权重,提高重要特征的关注度进而提高网络的表征能力;最后,通过Softmax层输出故障诊断结果。为了验证所提出的模型性能,使用凯斯西储大学采集的轴承数据集开展实验。结果表明,该模型故障诊断准确率可达到99.88%,与其他传统方法相比,具有良好的可行性和收敛性能,实践层面应用价值较高。 展开更多
关键词 故障诊断 滚动轴承 同步压缩小波变换 卷积神经网络 通道注意力模块 注意力机制
在线阅读 下载PDF
基于贝叶斯优化的时间卷积网络船舶航迹预测
18
作者 李金源 朱发新 +1 位作者 滕宪斌 毕齐林 《中国舰船研究》 CSCD 北大核心 2024年第6期303-316,共14页
[目的]为提高船舶航迹预测精度和计算效率,解决传统方法容易出现的梯度爆炸、计算时间长等问题,提出基于改进的贝叶斯优化算法与时间卷积神经网络的航迹预测模型。[方法]首先,通过引入时间模式注意力机制,提取各输入特征的权重,保证航... [目的]为提高船舶航迹预测精度和计算效率,解决传统方法容易出现的梯度爆炸、计算时间长等问题,提出基于改进的贝叶斯优化算法与时间卷积神经网络的航迹预测模型。[方法]首先,通过引入时间模式注意力机制,提取各输入特征的权重,保证航迹历史数据的时序性,同时引入可逆残差网络,减少时间卷积神经网络模型训练过程中占用的内存;然后,再采用贝叶斯优化算法对时间卷积网络中的超参数(内核大小K、膨胀系数d)进行寻优;最后,采用五折交叉验证方法对模型进行验证,获得最优模型后进行航迹预测。[结果]采用AIS采集的航迹数据验证,结果表明,在弱耦合、中耦合和强耦合航迹预测中,均方根误差分别平均提高5.5×10^(-5),3.5×10^(-4)和6×10^(-4)。[结论]所提出网络对复杂航迹具有良好的适应性,其预测精度均优于传统模型及LSTM模型,在耦合较强的航迹中仍能保持较高的预测精度。 展开更多
关键词 导航 神经网络 贝叶斯优化算法 时间卷积网络 时间模式注意力机制模块 可逆残差网络 AIS数据
在线阅读 下载PDF
基于YOLOv5-CBAM模型的划痕智能检测
19
作者 朱哲维 李珂 +3 位作者 匡璐 曹国栋 刘紫权 史旭阳 《无线电工程》 2024年第12期2789-2799,共11页
带钢作为现代钢铁产业的核心产品,划痕检测对于确保产品质量、提升生产效率和降低成本至关重要,广泛应用于汽车制造、金属加工、电子产品生产等领域。然而,划痕形态各异且易受光照、背景和噪声等因素影响,使得检测任务极具挑战性。近年... 带钢作为现代钢铁产业的核心产品,划痕检测对于确保产品质量、提升生产效率和降低成本至关重要,广泛应用于汽车制造、金属加工、电子产品生产等领域。然而,划痕形态各异且易受光照、背景和噪声等因素影响,使得检测任务极具挑战性。近年来,随着空间数据智能技术的不断进步,基于深度学习的目标检测算法(如Faster R-CNN、SSD、YOLO等)在检测任务中表现出色,通过自动学习、特征检测和精准目标定位,在复杂背景下也能准确检测。基于YOLOv5模型进行了算法结构的改进,将空间金字塔池化(Spatial Pyramid Pooling,SPP)模块替换为快速空间金字塔池化(Spatial Pyramid Pooling-Fast,SPPF)模块,引入注意力机制,改进现有的目标检测算法,提升划痕检测的准确性和鲁棒性。结合卷积块注意力机制模块(Convolutional Block Attention Module,CBAM)构建了YOLOv5-CBAM模型。CBAM通过关注通道和空间维度上的信息,使模型更精准地聚焦于划痕区域,提升了检测效果。实验结果显示,YOLOv5-CBAM模型在各类交并比(Intersection over Union,IoU)阈值下相较于YOLOv5,精确率、召回率和mAP@0.5有着较好的表现,分别提升了5.6%、9.1%和5.9%。随着空间数据智能技术的不断进步,未来有望为划痕检测提供更多创新思路和解决方案。 展开更多
关键词 划痕检测 YOLOv5 卷积注意力机制模块 模型构建与训练
在线阅读 下载PDF
基于深度卷积神经网络的低照度图像增强方法
20
作者 徐俊 戎舒畅 +3 位作者 李墨 刘煊 刘昭含 吴镇 《现代信息科技》 2024年第21期50-56,共7页
低照度条件下的图像细节和纹理难以分辨,导致信息丢失严重,传统增强方法需要大量人工调参、效率低且增强后细节不突出。为解决这一问题,提出一种基于卷积神经网络(CNN)的低照度图像增强模型,其通过数据驱动的网络结构自动学习低照度图... 低照度条件下的图像细节和纹理难以分辨,导致信息丢失严重,传统增强方法需要大量人工调参、效率低且增强后细节不突出。为解决这一问题,提出一种基于卷积神经网络(CNN)的低照度图像增强模型,其通过数据驱动的网络结构自动学习低照度图像的分解与增强,并通过端到端训练更新模型参数。模型包括分解网络、光照调整网络和降噪模块,并在分解网络和光照调整网络中加入卷积块注意力模块(CBAM),以更全面地捕获图像中的重要信息。模型首先通过分解网络将图像分解为光照分量和反射分量,然后分别输入光照调整网络和降噪模块进行处理,最后重建得到增强后的图像。实验结果表明,与其他增强算法相比,该方法能更有效地提升低照度图像的对比度和纹理细节,提供更清晰可靠的图像质量。 展开更多
关键词 低照度图像 图像增强 卷积神经网络 cbam注意力机制
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部