期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8的输电线路绝缘子表面缺陷识别算法 被引量:2
1
作者 熊伟 路鑫 +1 位作者 邱维进 王平强 《电子测量技术》 北大核心 2025年第2期178-188,共11页
针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,... 针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,在模型的颈部网络增加GD机制,减少特征融合过程中信息的丢失,提升小目标检测能力;最后,采用ATFL分类损失函数,削弱复杂背景对小目标检测的干扰,引入PIOU边界框损失函数,提高识别精度,加快模型收敛速度。实验结果表明,该算法的mAP50达到94.1%,精确率达到92.5%,召回率达到91.3%,相较于基线模型分别提高了3.1%、0.7%、3.9%,且综合性能优于最近的YOLOv9s、YOLOv10s等代表性算法。 展开更多
关键词 目标检测 绝缘子表面缺陷识别 小目标 卷积和注意力融合 边界框损失函数 分类损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部