期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
基于卷积双向长短期记忆网络的微网继电保护故障诊断技术
1
作者 杨志淳 闵怀东 +3 位作者 杨帆 雷杨 胡伟 陈鹤冲 《太阳能学报》 北大核心 2025年第1期420-428,共9页
分布式电源种类和容量不断提升的微网运行方式复杂、故障特征微弱,现有的继电保护装置故障诊断方法无法满足保护需求。提出一种基于卷积双向长短期记忆网络的微网继电保护故障诊断技术。首先,分析多能源互补微网系统架构,对采集的三相... 分布式电源种类和容量不断提升的微网运行方式复杂、故障特征微弱,现有的继电保护装置故障诊断方法无法满足保护需求。提出一种基于卷积双向长短期记忆网络的微网继电保护故障诊断技术。首先,分析多能源互补微网系统架构,对采集的三相电流数据进行预处理,提高后续模型对数据的学习效率;然后,融合卷积神经网络和双向长短期记忆网络提出卷积双向长短期记忆网络的微网继电保护故障诊断方法,提取三相电流数据长序列和局部序列特征实现故障分类、故障定位,融合注意力机制,重点关注对故障诊断有影响的特征,提高故障诊断准确率;最后经过RTDS实时仿真系统进行验证,实验结果表明,所提方法故障诊断精度高、计算时间短,同卷积神经网络、长短期记忆网络、人工神经网络相比,故障分类准确率分别提升8.53%、9.62%、11.45%,故障定位准确率分别提升7.47%、10.61%、10.85%,验证所提方法的有效性与先进性。 展开更多
关键词 微网 继电保护 故障诊断 卷积双向长短期记忆网络 三相电流 注意力机制
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的气温预测模型
2
作者 叶剑 唐欢 +1 位作者 殷华 高振翔 《现代信息科技》 2024年第21期35-40,45,共7页
气温与环境要素之间存在非线性关系,针对传统的预测方法难以捕捉数据的内在特征和时间相关性问题,提出一种基于卷积神经网络与双向长短期记忆网络相结合的气温预测模型。基于宿迁四个国家气象观测站的逐小时观测数据,首先通过一维卷积... 气温与环境要素之间存在非线性关系,针对传统的预测方法难以捕捉数据的内在特征和时间相关性问题,提出一种基于卷积神经网络与双向长短期记忆网络相结合的气温预测模型。基于宿迁四个国家气象观测站的逐小时观测数据,首先通过一维卷积神经网络提取气象要素数据的空间特征,然后将这些特征引入双向长短期记忆网络中来全面学习并掌握气象要素的上下文信息,进而对气温进行有效预测。实验结果表明,与其他的预测方法相比,所提模型在空间特征提取和时序特征学习方面表现卓越,且其在气温预测的精度上有显著的优势。 展开更多
关键词 深度学习 卷积神经网络 双向长短期记忆网络 气温预测 对比分析
在线阅读 下载PDF
基于扩散模型和双向长短期记忆网络的锂电池SOH估计
3
作者 柯欢 《河南科技》 2024年第19期5-11,共7页
【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SO... 【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SOH估计方法。【方法】首先,建立电池充电时间、电压和温度三者间的长期依赖关系云图;其次,设计一个时空信息捕捉模块,将该模块捕获的长期依赖信息作为扩散模型的生成条件,赋予扩散模型电池SOH数据生成能力;最后,利用双向长短期记忆网络(Bi-LSTM)对部分由原始数据和生成数据混合而成的电池数据集进行训练,并利用剩余的原始数据作为测试集对所提方法进行验证。【结果】验证结果表明,该方法不仅可以减少收集电池数据类型的周期和成本,而且能够有效预测电池SOH。【结论】该方法在电池SOH估计上具备良好的精度,可进一步探索其他电池数据集组合,优化模型结构,提高电池管理系统。 展开更多
关键词 电池健康状态 数据驱动 时空信息 扩散模型 双向长短期记忆网络
在线阅读 下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:25
4
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
采用小波变换和双向长短期记忆网络的脑电睡眠分期模型 被引量:8
5
作者 王天宇 陈晗 +1 位作者 王刚 吴宁 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期104-111,共8页
针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作... 针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作为单个睡眠片段的分期依据,再使用双向长短期记忆网络进一步提取睡眠片段之间的状态转换规则;最后利用深度学习方法建立特征、规则与睡眠阶段的映射,使用数据扩充和两步训练法训练模型,削弱数据不均衡的影响,完成连续片段的睡眠分期。采用SHHS公开数据库的5793名被试者的睡眠脑电数据对该模型进行验证,实验结果表明,睡眠分期准确率达到85.82%,整体F1达到78.39,Kappa系数达到0.799,和现有方法相比性能明显提升。 展开更多
关键词 睡眠分期 脑电信号 连续小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
一种基于双向长短期记忆结构与多尺度卷积结构融合的轴承智能故障诊断方法 被引量:14
6
作者 欧阳励 何水龙 +2 位作者 朱良玉 胡超凡 蒋占四 《振动与冲击》 EI CSCD 北大核心 2022年第19期179-187,共9页
轴承作为旋转机械中最易损耗的核心基础部件之一,是机械装备的重点监测对象。针对现有轴承智能故障诊断模型存在的对数据信息挖掘片面性及利用率低等问题,构建了一种基于双向长短期记忆(Bidirectional Long Short-term Memory,BLSTM)结... 轴承作为旋转机械中最易损耗的核心基础部件之一,是机械装备的重点监测对象。针对现有轴承智能故障诊断模型存在的对数据信息挖掘片面性及利用率低等问题,构建了一种基于双向长短期记忆(Bidirectional Long Short-term Memory,BLSTM)结构与多尺度卷积结构融合的深度学习网络模型。为了增强模型的分类性能以及提高模型对实际工程环境的贴合度,数据集中各类故障数据的数据量为非等量;然后将数据集通过BLSTM结构来获取具有对称性的数据特征,从而减少模型对前后故障信息记忆的紊乱、增强信息利用率,接着通过多尺度卷积结构对数据特征进行多角度理解与交流,防止特征提取片面化,同时还能增强模型的抗噪性能;最后通过全连接网络实现智能分类。将所提模型分别对深沟球轴承与圆柱滚子轴承故障数据进行处理分析,结果表明该智能模型具有较高的准确度与实用性。 展开更多
关键词 双向长短期记忆 多尺度卷积 深度学习 轴承智能故障诊断
在线阅读 下载PDF
基于卷积双向长短期记忆网络与混沌理论的滚动轴承故障诊断 被引量:7
7
作者 金江涛 许子非 +3 位作者 李春 缪维跑 孙康 肖俊青 《振动与冲击》 EI CSCD 北大核心 2022年第17期160-169,共10页
针对传统滚动轴承故障诊断方法在大噪声与变载荷环境下诊断困难的问题。基于混沌理论,通过卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)提出CCNN(Chaotic CNN)-BiLSTM智能故障诊断方法。采用相空间重构法将一维时间序列转化为二维混... 针对传统滚动轴承故障诊断方法在大噪声与变载荷环境下诊断困难的问题。基于混沌理论,通过卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)提出CCNN(Chaotic CNN)-BiLSTM智能故障诊断方法。采用相空间重构法将一维时间序列转化为二维混沌序列,学习并提取混沌序列中有效非线性信息,并输入Softmax层中完成分类。结果表明,较之现有方法,所提CCNN-BiLSTM方法在变载荷和大噪声(信噪比为-8 dB)环境下的准确率分别至少高出3.76%与5.21%,表明该方法具有良好的鲁棒性和泛化性能。 展开更多
关键词 卷积神经网络 双向长短期记忆网络 混沌理论 轴承 故障诊断
在线阅读 下载PDF
基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测 被引量:5
8
作者 郭应时 张瑞宾 +2 位作者 陈元华 李天明 蒋春燕 《汽车技术》 CSCD 北大核心 2022年第3期21-27,共7页
针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状... 针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状态观测数据的潜在特征,然后将以序列方式构造的具有时空关系的特征向量作为BiLSTM网络的输入数据,最后利用车辆运行数据对所构建的1DCNN-BiLSTM模型进行训练,形成期望的输入输出映射关系,从而预测车辆的行驶轨迹。试验结果表明,1DCNN-BiLSTM相比传统方法能更加准确有效地处理序列数据,对车辆运行轨迹预测的效果也具有较高的鲁棒性。 展开更多
关键词 观测数据 卷积神经网络 双向长短期记忆 时空关系 轨迹预测
在线阅读 下载PDF
基于卷积神经网络与长短期记忆神经网络的弹丸轨迹预测 被引量:9
9
作者 郑志伟 管雪元 +2 位作者 傅健 马训穷 尹上 《兵工学报》 EI CAS CSCD 北大核心 2023年第10期2975-2983,共9页
针对弹丸非线性轨迹预测问题,提出一种基于卷积神经网络(CNN)与长短期记忆(LSTM)神经网络的混合轨迹预测模型。通过建立6自由度弹丸运动模型,并使用4阶龙格库塔法外弹道仿真,得到大量轨迹数据样本;提出CNN-LSTM神经网络的混合轨迹预测模... 针对弹丸非线性轨迹预测问题,提出一种基于卷积神经网络(CNN)与长短期记忆(LSTM)神经网络的混合轨迹预测模型。通过建立6自由度弹丸运动模型,并使用4阶龙格库塔法外弹道仿真,得到大量轨迹数据样本;提出CNN-LSTM神经网络的混合轨迹预测模型,并利用滑动窗口法和差分法构造输入输出的轨迹数据对,将预测问题转化为有监督的学习问题;将所提模型与LSTM神经网络模型、门控循环单元(GRU)神经网络模型和反向传播(BP)神经网络模型在同一数据集下进行仿真实验。研究结果表明,CNN-LSTM神经网络模型预测3 s后的平均累积预测误差在x轴方向约为14.83 m,y轴方向约为20.77 m,z轴方向约为0.75 m,且轨迹预测精度优于单一模型,为弹丸轨迹预测研究提供了一定的参考。 展开更多
关键词 弹道模型 深度学习 监督学习 卷积神经网络与长短期记忆神经网络模型 轨迹预测
在线阅读 下载PDF
基于卷积双向长短期神经网络的调制方式识别 被引量:8
10
作者 谭继远 张立民 钟兆根 《火力与指挥控制》 CSCD 北大核心 2020年第6期129-134,共6页
针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制... 针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制方式识别方法。利用CNN卷积运算提取信号的空间特征,利用BiLSTM提取到信号的时序相关性,利用softmax层输出识别概率,达到多调制识别的目的。实验结果表明,在没有信道和噪声等先验信息的条件下,该方法的识别性能得到了进一步提升,能有效识别16QAM、64QAM等11种调制类别,且该方法的复杂度较低,大大节省了训练识别时间,具有较好的工程应用价值。 展开更多
关键词 调制识别 卷积神经网络 双向长短期记忆神经网络 深度学习
在线阅读 下载PDF
基于量子海鸥优化和双向记忆的波浪能发电平台运动预报方法研究
11
作者 李明伟 徐瑞喆 +2 位作者 盛其虎 耿敬 张启昭 《哈尔滨工程大学学报》 北大核心 2025年第3期383-389,共7页
针对波浪能发电平台运动因风、浪、流的耦合作用从而难以预报的问题,本文提出了一种新的基于量子海鸥优化算法和双向长短期记忆神经网络的波浪能发电平台运动预报方法。引入双向长短期记忆网络模拟波浪能发电平台运动非线性动力系统;建... 针对波浪能发电平台运动因风、浪、流的耦合作用从而难以预报的问题,本文提出了一种新的基于量子海鸥优化算法和双向长短期记忆神经网络的波浪能发电平台运动预报方法。引入双向长短期记忆网络模拟波浪能发电平台运动非线性动力系统;建立了基于量子海鸥优化算法的双向长短期记忆神经网络波浪能发电平台运动网络超参优选方法;构建一种新的双向长短期记忆神经网络波浪能发电平台运动与量子海鸥优化算法相结合的波浪能发电平台运动深度学习组合预报方法。试验结果表明:与本文选择的模型相比,本文建立的预测网络具有更高的预测精度,并且量子海鸥优化算法在选择双向长短期记忆神经网络的波浪能发电平台运动的超参数时与选取的算法相比,获得了更合适的超参组合。 展开更多
关键词 波浪能发电平台运动 非线性动力系统 深度学习模型 双向长短期记忆网络 网络超参优选 智能优化算法 海鸥优化算法 量子计算
在线阅读 下载PDF
基于时间卷积网络的无监督入侵检测模型
12
作者 廖金菊 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第1期164-173,共10页
现有的多数入侵检测模型通过长短期记忆(long short-term memory,LSTM)网络评估数据之间的时间依赖性。然而,LSTM网络处理序列数据增加了训练模型的计算复杂度和存储成本。为此,提出了基于多头注意力机制和时间卷积网络的无监督入侵检... 现有的多数入侵检测模型通过长短期记忆(long short-term memory,LSTM)网络评估数据之间的时间依赖性。然而,LSTM网络处理序列数据增加了训练模型的计算复杂度和存储成本。为此,提出了基于多头注意力机制和时间卷积网络的无监督入侵检测模型(unsupervised intrusion detection model based on multihead attention mechanism or temporal convolutional network,UDMT)。UDMT不依赖于LSTM网络,它利用时间卷积网络和多头注意力机制构建生成对抗网络的生成器和决策器,实现计算的并行化,进而降低复杂度。同时,UDMT不依赖于标签的攻击数据,它具有检测已知攻击和未知攻击的能力。此外,UDMT采用不同的隐藏层模式,配置灵活,以满足不同的检测率和检测时延的要求。相比于两个同类的检测模型,提出的UDMT能获取更高的检测率和更低的检测时延。 展开更多
关键词 入侵检测模型 长短期记忆网络 生成对抗网络 多头注意力机制 时间卷积网络
在线阅读 下载PDF
基于特征工程与仿生优化算法构建河流溶解氧预测模型 被引量:1
13
作者 李鹏程 苏永军 +1 位作者 王钰 贾悦 《中国农村水利水电》 北大核心 2025年第2期37-44,共8页
河流水体中溶解氧骤增或耗竭均会引发系列环境污染、物种多样性破坏等问题,准确预测河流溶解氧(DO)浓度对河流水环境治理具有重要意义。为提高模型输入特征的可解释性及模型精度,获取河流DO浓度最优预测模型,研究利用黄河流域山西境内... 河流水体中溶解氧骤增或耗竭均会引发系列环境污染、物种多样性破坏等问题,准确预测河流溶解氧(DO)浓度对河流水环境治理具有重要意义。为提高模型输入特征的可解释性及模型精度,获取河流DO浓度最优预测模型,研究利用黄河流域山西境内水质监测站点数据,以双向长短期记忆网络(BiLSTM)为基础,结合卷积神经网络模型(CNN)和注意力机制(Attention Mechanism),基于随机森林模型(RF)进行特征优选,建立RF-CNN-BiLSTM-Attention(RF-CBA)模型,进一步利用吸血水蛭优化算法(BSLO)、黑翅鸢优化算法(BKA)、白鲨优化算法(WSO)等仿生优化算法,构建了BSLO-RF-CBA、BKA-RF-CBA、WSO-RF-CBA共3种优化模型,并与深度学习中CNN-A、LSTM-A、BiLSTM-A、CBA、RF-CBA模型对比,分析得到河流溶解氧预测结果,以平均绝对误差(MAE)、均方根误差(RMSE)、均方误差(MSE)、决定系数(R2)、全绩效指标(GPI)和相对误差(MAPE)评价不同模型精度,结果表明:(1)RF模型通过对影响河流DO特征值进行排序、筛选,可消除冗余特征对水质预测模型的影响,提高预测精度。(2)利用仿生算法优化RF-CBA模型的神经元数量、学习率、正则化系数等参数,模型模拟精度进一步提升,总体上捕捉到了DO波动的时间序列特征,模型表现出强稳定性和泛化能力。(3)BSLO-RF-CBA模型模拟精度最高,对DO变化捕捉能力突出,具有更强的捕获全局依赖关系的能力,推荐用于河流溶解氧预测模型。该模型具备扩展至不同河流溶解氧等污染物浓度预测的能力,为河流水体污染预警与系统化管理提供技术支撑。 展开更多
关键词 溶解氧 双向长短期记忆网络机 特征优选 仿生优化算法 耦合模型
在线阅读 下载PDF
基于CNN-BiLSTM模型的平原型水库洪水预报研究 被引量:1
14
作者 赵忠峰 王雪妮 +3 位作者 晋华 郑婕 刘晓东 郭园 《水电能源科学》 北大核心 2025年第2期10-14,共5页
在平原型水库反推入库流量过程中,存在明显的噪声干扰,导致传统的洪水预报方法精度下降。对此,提出一种结合卷积神经网络(CNN)与双向长短期记忆神经网络(BiLSTM)的入库洪水预报模型,该模型采用CNN的卷积层挖掘入库洪水数据中的深层特征... 在平原型水库反推入库流量过程中,存在明显的噪声干扰,导致传统的洪水预报方法精度下降。对此,提出一种结合卷积神经网络(CNN)与双向长短期记忆神经网络(BiLSTM)的入库洪水预报模型,该模型采用CNN的卷积层挖掘入库洪水数据中的深层特征信息,并赋予不重要特征较低的权重,以便模型更加专注于对目标任务关键的特征信息。此外,利用BiLSTM处理流量序列中的长期依赖问题,通过其遗忘门有选择性地过滤掉权重较低的特征信息,实现对入库洪水过程的准确预测。最后,基于不同预见期评估所构建模型在安徽省合肥市大房郢水库入库洪水预报中的精准度。结果表明,4 h预见期下CNN-BiLSTM模型在入库洪水预报中具有更高的预报精度,相比BiLSTM模型和新安江(XAJ)模型,其确定性系数(D_(DC))分别提升9.9%、39.0%,均方根误差(R_(RMSE))和相对偏差(B_(BIAS))分别降低34.6%、17.1%和148.6%、20.6%。研究成果可为反推入库流量过程的平原型水库入库洪水预报提供新思路和技术支持。 展开更多
关键词 平原型水库 卷积神经网络 双向长短期记忆神经网络 入库洪水预报
在线阅读 下载PDF
基于AMCNN-BiLSTM-CatBoost的滚动轴承故障诊断模型研究
15
作者 袁建华 邵星 +1 位作者 王翠香 皋军 《噪声与振动控制》 北大核心 2025年第2期82-89,共8页
针对现有的轴承故障诊断模型存在的分类精度差、运算效率不高的问题,提出一种基于注意力机制-卷积神经网络-双向长短期记忆网络-CatBoost(AMCNN-BiLSTM-CatBoost)的滚动轴承故障诊断模型。首先,对原始振动信号进行下采样技术处理,然后... 针对现有的轴承故障诊断模型存在的分类精度差、运算效率不高的问题,提出一种基于注意力机制-卷积神经网络-双向长短期记忆网络-CatBoost(AMCNN-BiLSTM-CatBoost)的滚动轴承故障诊断模型。首先,对原始振动信号进行下采样技术处理,然后将经过下采样后的振动信号作为模型输入,通过3个不同的卷积模块提取特征,并使用通道注意力模块对提取的特征进行加权融合,然后将经过加权融合后的数据输入到双向长短期记忆网络中进一步地提取时序特征信息,最后输入到CatBoost中进行故障分类。经过实验表明,该模型不仅能够保证故障诊断的高准确率,还可以大大缩短网络的训练时间。 展开更多
关键词 故障诊断 卷积神经网络 双向长短期记忆网络 注意力机制 CatBoost 轴承
在线阅读 下载PDF
基于深度学习的香菇菌棒生产成本预测模型研究
16
作者 卢翠红 张峰 吴秋兰 《山东农业科学》 北大核心 2025年第1期174-180,共7页
针对香菇菌棒生产成本管控难、成本预测精度低等问题,本研究在深入剖析香菇菌棒生产成本关键影响因素的基础上,提出了基于时间卷积神经网络(TCN)、双向长短期记忆网络(BiLSTM)和注意力(Attention)机制的香菇菌棒生产成本预测模型。首先... 针对香菇菌棒生产成本管控难、成本预测精度低等问题,本研究在深入剖析香菇菌棒生产成本关键影响因素的基础上,提出了基于时间卷积神经网络(TCN)、双向长短期记忆网络(BiLSTM)和注意力(Attention)机制的香菇菌棒生产成本预测模型。首先利用轻量级梯度提升机(LightGBM)筛选出与香菇菌棒生产成本相关的重要特征,降低预测模型的输入维度;然后构建TCN网络与BiLSTM网络对输入数据进行特征提取,并将提取的特征进行融合;最后在上述基础上添加Attention机制,使用全连接层得到最终的香菇菌棒生产成本预测结果。实验结果表明,该模型的预测均方根误差、平均绝对百分比误差、平均绝对误差分别为0.0841、2.2526、0.0738,香菇菌棒生产成本的预测曲线接近真实的曲线,具有良好的预测效果,可以有效满足香菇菌棒生产企业对成本预测的要求。 展开更多
关键词 香菇菌棒 双向长短期记忆网络 时间卷积神经网络 注意力机制 成本预测 深度学习
在线阅读 下载PDF
基于注意力机制的CNN-LSTM风速预测模型研究
17
作者 童奇 熊龙祥 +1 位作者 王贯宇 涂佳黄 《湘潭大学学报(自然科学版)》 2025年第2期46-54,共9页
基于风力大小非线性、随机性和难以准确预测的特点,构建了以卷积神经网络(CNN)和长短期记忆神经网络(LSTM)为基础的短期局部风速预测模型,并采用TensorFlow深度学习平台进行模型参数调试.然后构建了一种基于注意力机制的CNN-LSTM-Attent... 基于风力大小非线性、随机性和难以准确预测的特点,构建了以卷积神经网络(CNN)和长短期记忆神经网络(LSTM)为基础的短期局部风速预测模型,并采用TensorFlow深度学习平台进行模型参数调试.然后构建了一种基于注意力机制的CNN-LSTM-Attention风速预测组合模型,采用福建平潭岛风电场4个不同季节的典型日风速数据集为样本对该模型的预测精度进行测试.测试结果表明,在风速预测精度方面,CNN-LSTM-Attention模型优于CNN-LSTM模型和LSTM模型,特别是在风速剧烈变化的工况时,CNN-LSTM-Attention模型的预测精度提升更为显著,且预测结果的可靠性更高,这表明该模型对于不同的风速变化和不同的数据集具有更强的适应性和稳健性. 展开更多
关键词 风速预测 长短期记忆神经网络 卷积神经网络 注意力机制 组合预测模型
在线阅读 下载PDF
基于增强Bi-LSTM的船舶运动模型辨识
18
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 雷鹏 《中国舰船研究》 北大核心 2025年第1期76-84,共9页
[目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提... [目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提取。基于此,设计一维卷积神经网络(1D-CNN)提取序列的空间维度特征。然后,采用多头自注意力机制(MHSA)多角度对序列进行自适应加权处理。利用KVLCC2船舶航行数据,将所提增强Bi-LSTM模型与支持向量机(SVM)、门控循环单元(GRU)、长短期记忆神经网络(LSTM)模型的预测效果进行对比。[结果]所提增强Bi-LSTM模型在测试集中均方根误差(RMSE)、平均绝对误差(MAE)性能指标分别低于0.015和0.011,决定系数(R2)高于0.99913,预测精度显著高于SVM,GRU,LSTM模型。[结论]增强Bi-LSTM模型泛化性能优异,预测稳定性及预测精度高,有效实现了船舶的运动模型辨识。 展开更多
关键词 系统辨识 非参数化建模 一维卷积神经网络 双向长短期记忆神经网络 多头自注意力机制
在线阅读 下载PDF
面向矿用机电设备数字孪生模型的故障特征提取与识别技术
19
作者 李丁卯 罗珍平 《现代电子技术》 北大核心 2025年第8期173-178,共6页
为满足矿用机电设备的智能化故障诊断需求,基于数字孪生模型提出了一种故障特征提取与识别技术方案。该方案主要包括机电设备的数字孪生建模和故障特征提取与识别两方面。通过卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型完成数... 为满足矿用机电设备的智能化故障诊断需求,基于数字孪生模型提出了一种故障特征提取与识别技术方案。该方案主要包括机电设备的数字孪生建模和故障特征提取与识别两方面。通过卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型完成数字孪生的建模;使用数据可视化技术和Z-score标准化方法对数据进行处理和筛选,利用小波变换方法进行故障特征提取,并设计一种基于CNN的故障识别算法。相比于传统方法,所提出的故障识别算法能够有效提高故障识别的准确率和实时性。实验测试结果表明:所构建的数字孪生模型能够准确地模拟和表征设备运行情况,验证了所提方法的正确性和有效性;而且故障识别准确率高于同类技术模型,在提高故障诊断效率方面的工程应用效果良好。 展开更多
关键词 煤矿机电设备 数字孪生模型 故障特征提取 故障识别算法 卷积神经网络 长短期记忆网络 诊断精确度
在线阅读 下载PDF
基于CNN-Bi-LSTM的农业乡土文化文本分类模型构建
20
作者 赵青 《信息技术》 2025年第3期107-115,共9页
针对当前网络媒体中的农业文本分类提取困难的问题,文中提出一种基于多层卷积神经网络结构(CNN)结合双向长短期记忆网络(Bi-LSTM)的文本分类模型。模型采用Jieba分词工具进行文本预处理,在CNN模型的文本特征提取的基础上,引用LSTM门控... 针对当前网络媒体中的农业文本分类提取困难的问题,文中提出一种基于多层卷积神经网络结构(CNN)结合双向长短期记忆网络(Bi-LSTM)的文本分类模型。模型采用Jieba分词工具进行文本预处理,在CNN模型的文本特征提取的基础上,引用LSTM门控机制优化结构。实验表明,运用该模型对农业乡土文化文本进行分类时,数据获取精度均保持在90%左右。实验证明了基于CNN-Bi-LSTM的优化模型在农业乡土文化文本分类识别中具备较高的精度性能和稳定性。 展开更多
关键词 农业乡土文化 文本分类 卷积神经网络 双向长短期记忆 神经网络
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部