期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的领域适配模型的多工况迁移的轴承故障诊断 被引量:11
1
作者 钱思宇 秦东晨 +1 位作者 陈江义 袁峰 《振动与冲击》 EI CSCD 北大核心 2022年第24期192-200,共9页
针对故障滚动轴承在单一工况数据下训练的深度学习模型无法在复杂工况下无法实现有效的故障诊断,提出一种基于卷积神经网络的领域适配(convolutional neural network-domain adaptation,CNN-DA)模型。卷积网络用于对故障振动信号进行高... 针对故障滚动轴承在单一工况数据下训练的深度学习模型无法在复杂工况下无法实现有效的故障诊断,提出一种基于卷积神经网络的领域适配(convolutional neural network-domain adaptation,CNN-DA)模型。卷积网络用于对故障振动信号进行高层特征提取,网络首尾加入通道注意力机制(channel attention mechanism,CAM),以动态分配特征通道的权重,减小无效信息的干扰。结合领域自适应方法,将特征提取层获取到的高层故障特征进行源、目标域领域适配,领域适配模块整合了全域适配和类别域适配,以使两个领域中相同故障标签的特征的数据分布逐渐趋于重合,最后将深度学习模型应用于多种不同工况迁移的场合进行训练,得到训练结果和测试结果。通过不同来源数据集的试验,在多种工况迁移下测试模型,结果表明提出的模型能够应对复杂工况变化下的滚动轴承故障检测。 展开更多
关键词 故障诊断 深度学习 神经网络的领域(cnn-da) 领域
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部