期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯正则化神经网络的卡车轮罩横梁注塑工艺多目标优化
1
作者 张晗 王明伟 +3 位作者 蔡世铭 王宗强 于峻伟 叶星辉 《工程塑料应用》 2025年第10期95-103,共9页
以大型塑件卡车轮罩横梁的体积收缩率(Y1)和Z方向(装配方向)最大翘曲变形量(Y2)为响应目标,选取熔体温度、模具温度、第一段保压时间、第二段保压时间、第一段保压压力、第二段保压压力为试验变量,通过最优拉丁超立方试验设计100组样本... 以大型塑件卡车轮罩横梁的体积收缩率(Y1)和Z方向(装配方向)最大翘曲变形量(Y2)为响应目标,选取熔体温度、模具温度、第一段保压时间、第二段保压时间、第一段保压压力、第二段保压压力为试验变量,通过最优拉丁超立方试验设计100组样本,利用Moldex3D模流分析软件进行模拟。利用贝叶斯正则化神经网络(BRNN)建立Y1和Y2的回归预测模型,这两个模型的决定系数(R^(2))分别为0.991和0.989;通过非支配排序遗传算法II(NSGA-II)对模型进行多目标优化,得到最优试验变量参数。将最优试验变量参数在Moldex3D中进行模拟和现场实际应用,发现对于Y1和Y2,模拟结果与BRNN-NSGA-II预测的最优结果之间的误差分别为0.14%和7.28%,与初始模拟结果相比分别降低了3.16%和64.42%;实际塑件成型质量良好,满足生产要求。上述结果表明提出的BRNN结合NSGA-II的方法可有效解决大型复杂塑件的注塑工艺多目标优化问题。 展开更多
关键词 注塑 多目标优化 卡车轮罩横梁 最优拉丁超立方试验 贝叶斯正则化神经网络 非支配排序遗传算法II(NSGA-II)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部