An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for t...An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.展开更多
The authors proposed a moving long baseline algorithm based on the extended Kalman filter (EKF) for cooperative navigation and localization of multi-unmanned underwater vehicles (UUVs). Research on cooperative nav...The authors proposed a moving long baseline algorithm based on the extended Kalman filter (EKF) for cooperative navigation and localization of multi-unmanned underwater vehicles (UUVs). Research on cooperative navigation and localization for multi-UUVs is important to solve navigation problems that restrict long and deep excursions. The authors investigated improvements in navigation accuracy. In the moving long base line (MLBL) structure, the master UUV is equipped with a high precision navigation system as a node of the moving long baseline, and the slave UUV is equipped with a low precision navigation system. They are both equipped with acoustic devices to measure relative location. Using traditional triangulation methods to calculate the position of the slave UUV may cause a faulty solution. An EKF was designed to solve this, combining the proprioceptive and exteroceptive sensors. Research results proved that the navigational accuracy is improved significantly with the MLBL method based on EKF.展开更多
To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bia...To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bias and sensor frame tilt errors in multisensor systems with asynchronous data. Simulation results is presented to demonstrate the performance of these approaches. The least squares approach can compress measurements to any time. The Kalman filter algorithm can detect registration errors and use the information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to be fused.展开更多
The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phas...The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.展开更多
The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and p...The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and predicted by the pulse timing models. With the detected pulse phase, the satellite position with respect to the Earth center can be calculated along the line-of-sight to the pulsar. Using three pulsars, the satellite position in the in- ertial frame can be resolved. The extended Kalman filter (EKF) algorithm is designed to incorporate the range measurements with the satellite dynamics. Simulation verification shows that the proposed algorithm can accu- rately determine the satellite orbit, with the position error less than 100 m. Furthermore, the factors influencing the navigation performance are also discussed.展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver d...This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.展开更多
An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applica...An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisenso...Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.展开更多
A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akai...A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.展开更多
The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The meas...The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.展开更多
文摘An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.
基金Supported by the National Natural Science Foundation of China under Grant No.60875071the High Technology Research and Development Program of China under Grant No.2007AA0676the Program for New Century Excellent Talents in University under Grant No.NCET-06-0877
文摘The authors proposed a moving long baseline algorithm based on the extended Kalman filter (EKF) for cooperative navigation and localization of multi-unmanned underwater vehicles (UUVs). Research on cooperative navigation and localization for multi-UUVs is important to solve navigation problems that restrict long and deep excursions. The authors investigated improvements in navigation accuracy. In the moving long base line (MLBL) structure, the master UUV is equipped with a high precision navigation system as a node of the moving long baseline, and the slave UUV is equipped with a low precision navigation system. They are both equipped with acoustic devices to measure relative location. Using traditional triangulation methods to calculate the position of the slave UUV may cause a faulty solution. An EKF was designed to solve this, combining the proprioceptive and exteroceptive sensors. Research results proved that the navigational accuracy is improved significantly with the MLBL method based on EKF.
文摘To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bias and sensor frame tilt errors in multisensor systems with asynchronous data. Simulation results is presented to demonstrate the performance of these approaches. The least squares approach can compress measurements to any time. The Kalman filter algorithm can detect registration errors and use the information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to be fused.
文摘The strapdown inertial navigation system (SINS)/two-antenna GPS integrated navigation system is discussed. Corresponding error and the measurement models are built, especially the double differenced GPS carrier phase model. The extended Kalman filtering is proposed. And the hardware composition and connection are designed to simulate the SINS/two-antenna GPS integrated navigation system. Results show that the performances of the system, the precision of the navigation and the positioning, the reliability and the practicability are im proved.
文摘The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and predicted by the pulse timing models. With the detected pulse phase, the satellite position with respect to the Earth center can be calculated along the line-of-sight to the pulsar. Using three pulsars, the satellite position in the in- ertial frame can be resolved. The extended Kalman filter (EKF) algorithm is designed to incorporate the range measurements with the satellite dynamics. Simulation verification shows that the proposed algorithm can accu- rately determine the satellite orbit, with the position error less than 100 m. Furthermore, the factors influencing the navigation performance are also discussed.
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
文摘This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.
文摘An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
文摘Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.
文摘A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.
文摘The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.