针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低...针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低为多目标,利用遗传算法求解卡尔曼滤波自适应参数获得最优储能目标功率。为提高混合储能系统协调运行能力,考虑调节储能荷电状态(state of charge,SOC)通过模型预测控制实现计及电池运行寿命与超级电容SOC变化的动态功率分配。最后,结合实际风电功率数据进行仿真验证。结果表明,所提策略能够有效改善电池SOC、降低超级电容容量,符合储能平抑风电功率需求,能充分考虑两种储能设备的特性差异,提高功率分配的合理性,改善储能系统经济性。展开更多
荷电状态(state of charge,SOC)和峰值功率(state of peak power,SOP)的精确估计对保障电池安全稳定运行具有重要意义。为解决传统估计算法误差高、鲁棒性差等问题,本文提出了一种基于自适应无迹卡尔曼滤波(adaptive unscented Kalman f...荷电状态(state of charge,SOC)和峰值功率(state of peak power,SOP)的精确估计对保障电池安全稳定运行具有重要意义。为解决传统估计算法误差高、鲁棒性差等问题,本文提出了一种基于自适应无迹卡尔曼滤波(adaptive unscented Kalman filtering,AUKF)和经济模型预测控制(economic model predictive control,EMPC)的全钒液流电池(all-vanadium redox batteries,VRB)SOC/SOP联合估计方法。首先,为了提高传统模型的建模精度,本文综合考虑了VRB的电化学场和流体力学场的耦合特性,建立了一个能够全面刻画VRB运行过程的综合等效电路模型,并采用人工蜂群算法(artificial bee colony algorithm,ABC)对模型参数进行离线辨识。随后,考虑到传统的UKF算法无法适应系统噪声,收敛性差,且忽略电池参数变化等缺点,本文提出了基于AUKF的在线参数辨识和SOC估计算法,通过自适应调整UKF算法的参数来提高模型的精度。结合SOC的估计结果,采用EMPC算法估计VRB的SOP,并综合考虑了电压、电流、SOC和电解液流速等约束条件。最后,设计了多种实验工况验证了本文提出的SOC/SOP联合估计算法的精度。文章研究内容能够为液流电池不同运行状态下峰值功率预测和储能电站的精准调度提供依据。展开更多
文摘针对混合储能平抑风电功率波动时储能系统成本过高的问题,提出一种基于卡尔曼滤波和模型预测控制的风电波动平抑控制策略。该方法基于风储联合发电系统,在满足风电平抑需求的基础上,通过预设截止频率以储能容量变化最小与功率波动最低为多目标,利用遗传算法求解卡尔曼滤波自适应参数获得最优储能目标功率。为提高混合储能系统协调运行能力,考虑调节储能荷电状态(state of charge,SOC)通过模型预测控制实现计及电池运行寿命与超级电容SOC变化的动态功率分配。最后,结合实际风电功率数据进行仿真验证。结果表明,所提策略能够有效改善电池SOC、降低超级电容容量,符合储能平抑风电功率需求,能充分考虑两种储能设备的特性差异,提高功率分配的合理性,改善储能系统经济性。