期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
并行多参考模型卡尔曼滤波系统仿真研究 被引量:5
1
作者 任光 刘军 朱利民 《系统仿真学报》 EI CAS CSCD 2000年第6期660-663,共4页
研究了卡尔曼滤波器算法的基础上,提出随机系统多参考模型卡尔曼滤波器的新方法。该方法用N个线性模型近似表示参数变化很大的非线性系统。再用卡尔曼滤波器对N个模型进行滤波,得到N个状态的估计值。然后,对这N个状态估计值进行概率... 研究了卡尔曼滤波器算法的基础上,提出随机系统多参考模型卡尔曼滤波器的新方法。该方法用N个线性模型近似表示参数变化很大的非线性系统。再用卡尔曼滤波器对N个模型进行滤波,得到N个状态的估计值。然后,对这N个状态估计值进行概率加权求和,得到最优状态估计值。分别针对二阶系统和船舶模型进行了大量的仿真研究。仿真结果展示,该方法具有广阔的工程应用前景。 展开更多
关键词 卡尔曼滤波系统 系统仿真 多参考模型
在线阅读 下载PDF
基于Haar小波的一类动态多尺度系统最优估计算法
2
作者 崔培玲 潘泉 +1 位作者 张磊 张洪才 《西北工业大学学报》 EI CAS CSCD 北大核心 2004年第2期149-152,共4页
提出一种基于状态空间投影方程的动态多尺度系统建模方法 ,给出了基于 Haar小波的模型的具体形式。该模型满足标准卡尔曼滤波条件 ,执行卡尔曼滤波 ,可获得各个尺度上目标状态线性最小方差意义下的最优融合估计值 ,仿真结果令人满意 ,... 提出一种基于状态空间投影方程的动态多尺度系统建模方法 ,给出了基于 Haar小波的模型的具体形式。该模型满足标准卡尔曼滤波条件 ,执行卡尔曼滤波 ,可获得各个尺度上目标状态线性最小方差意义下的最优融合估计值 ,仿真结果令人满意 ,并为动态多尺度系统建立了一种新的估计理论框架。 展开更多
关键词 动态多尺度系统 Haar小波 卡尔曼滤波
在线阅读 下载PDF
Unscented Kalman filter for SINS alignment 被引量:14
3
作者 Zhou Zhanxin Gao Yanan Chen Jiabin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期327-333,共7页
In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and mo... In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment. Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment. The UKF has good performance in case of small initial misalignment. 展开更多
关键词 Unscented Kalman filter Strapdown inertial navigation ALIGNMENT Extended Kalman filter.
在线阅读 下载PDF
Navigation system of a class of underwater vehicle based on adaptive unscented Kalman fiter algorithm 被引量:10
4
作者 刘开周 李静 +2 位作者 郭威 祝普强 王晓辉 《Journal of Central South University》 SCIE EI CAS 2014年第2期550-557,共8页
Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innov... Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance. 展开更多
关键词 human occupied vehicle NAVIGATION extended Kalman filter unscented Kalman filter adaptive unscented Kalman filter
在线阅读 下载PDF
Fuzzy adaptive Kalman filter for indoor mobile target positioning with INS/WSN integrated method 被引量:10
5
作者 杨海 李威 罗成名 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1324-1333,共10页
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil... Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods. 展开更多
关键词 inertial navigation system(INS) wireless sensor network(WSN) mobile target integrated positioning fuzzy adaptive Kalman filter
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部