期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于稀疏贝叶斯学习的GFDM系统联合迭代信道估计与符号检测
1
作者 王莹 于永海 +1 位作者 郑毅 林彬 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1496-1505,共10页
针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶... 针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶斯学习框架下,结合期望最大化算法(Expectation-Maximization,EM)和卡尔曼滤波与平滑算法实现块时变信道的最大似然估计;基于信道状态信息的估计值进行GFDM符号检测,并通过信道估计与符号检测的迭代处理逐步提高信道估计与符号检测的精度.仿真结果表明,所提算法能够获得接近完美信道状态信息条件下的误码率性能,且具有收敛速度快、对多普勒频移鲁棒性高等优点. 展开更多
关键词 广义频分复用 时变信道估计 稀疏贝叶斯学习 期望最大化 卡尔曼滤波与平滑
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部