Load balancing plays a critical role in a cellular network. As one kind of cellular network, Radio-over-Fibre (RoF) system can provide ubiquitous high data-rate transmissions, which has attracted many attentions, bu...Load balancing plays a critical role in a cellular network. As one kind of cellular network, Radio-over-Fibre (RoF) system can provide ubiquitous high data-rate transmissions, which has attracted many attentions, but it also suffer load unbalancing problem. In order to improve the system performance, in this paper, we propose a novel loading balance scheme in RoF system based on differential game theory. The scheme formulates the load allocated to each RAP (Radio Access Point) as a Nasb Equilibrium, using non-cooperative differential game to obtain the optical load allocation of each RAP. The simulations performed show that the non-cooperative differential game algorithm is applicable and the optimal load solution can be achieved.展开更多
基金This research was supported by the Fundamental Research Funds for the Central Universities,also supported by the National Natural Science Foundation of P.R.China
文摘Load balancing plays a critical role in a cellular network. As one kind of cellular network, Radio-over-Fibre (RoF) system can provide ubiquitous high data-rate transmissions, which has attracted many attentions, but it also suffer load unbalancing problem. In order to improve the system performance, in this paper, we propose a novel loading balance scheme in RoF system based on differential game theory. The scheme formulates the load allocated to each RAP (Radio Access Point) as a Nasb Equilibrium, using non-cooperative differential game to obtain the optical load allocation of each RAP. The simulations performed show that the non-cooperative differential game algorithm is applicable and the optimal load solution can be achieved.