期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
用于激光雷达目标检测的单阶段无锚框优化网络
1
作者 朱望江 郭建伟 +2 位作者 张吉光 孟维亮 张晓鹏 《计算机辅助设计与图形学学报》 北大核心 2025年第3期457-464,共8页
激光雷达目标检测近年来开始借鉴图像目标检测的网络设计,但依然存在计算低效无法满足实时应用以及网络结构简单导致性能不足的问题.为此,提出的网络采用了单阶段无锚框的简洁设计;优化了激光点云体素化表达,在提升计算效率的同时保留... 激光雷达目标检测近年来开始借鉴图像目标检测的网络设计,但依然存在计算低效无法满足实时应用以及网络结构简单导致性能不足的问题.为此,提出的网络采用了单阶段无锚框的简洁设计;优化了激光点云体素化表达,在提升计算效率的同时保留了一部分点云高程特征;基于残差网络的思想,设计了更深的主干网络结构用于提取深度特征;引入特征金字塔来提升小目标的检测效果.在公开数据集KITTI上,所提网络的mAP指标在各类别目标的检测中均取得了领先的性能(提高了1%~3%).在自动驾驶计算平台上的运行时间测试表明,所提网络能够达到43 ms/帧的处理速度,满足实时性需求. 展开更多
关键词 目标检测 激光雷达 自动驾驶 阶段
在线阅读 下载PDF
深度学习下的单阶段通用目标检测算法研究综述 被引量:8
2
作者 王宁 智敏 《计算机科学与探索》 北大核心 2025年第5期1115-1140,共26页
近年来,目标检测算法作为计算机视觉领域中的核心任务,逐渐成为热门研究方向。它使得计算机能够识别和定位图像或视频帧中的目标物体,广泛应用于自动驾驶、生物个体检测、农业检测、医疗影像分析等领域。随着深度学习的发展,通用目标检... 近年来,目标检测算法作为计算机视觉领域中的核心任务,逐渐成为热门研究方向。它使得计算机能够识别和定位图像或视频帧中的目标物体,广泛应用于自动驾驶、生物个体检测、农业检测、医疗影像分析等领域。随着深度学习的发展,通用目标检测算法从传统的目标检测方法转变为基于深度学习下的目标检测方法。其中深度学习下的通用目标检测算法主要分为单阶段目标检测与两阶段目标检测,以单阶段目标检测为切入点,根据采用经典卷积与Transformer两种不同架构,对首个单阶段目标检测算法YOLO系列(YOLOv1~YOLOv11、YOLO主要改进版本)、SSD等和以Transformer为基础架构的DETR系列的主流单阶段检测算法进行分析总结。介绍各个算法的网络结构以及其研究进展,根据各个算法的结构归纳出其特点优势以及局限性,概括目标检测领域主要通用数据集与评价指标,分析各算法以及其改进方法的性能,讨论各算法在不同领域的应用现状,展望单阶段目标检测算法在未来的研究方向。 展开更多
关键词 目标检测 深度学习 计算机视觉 阶段 YOLO DETR
在线阅读 下载PDF
基于全卷积网络的复杂背景红外弱小目标检测研究 被引量:2
3
作者 关晓丹 郑东平 肖成 《激光杂志》 CAS 北大核心 2024年第4期254-258,共5页
针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用... 针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用全卷积网络设计弱小目标检测的分类器,实现复杂背景红外弱小目标检测。实验结果表明,该方法的复杂背景红外弱小目标检测精度超过97%,具有较高的实际应用价值。 展开更多
关键词 卷积网络 红外弱小目标 检测精度 提取特征
在线阅读 下载PDF
深度学习中单阶段金属表面缺陷检测算法优化综述 被引量:5
4
作者 董甲东 郭庆虎 +1 位作者 陈琳 桑飞虎 《计算机工程与应用》 北大核心 2025年第4期72-89,共18页
金属表面的划痕、凹坑、波纹等缺陷会直接影响产品的质量。传统的检测方法耗时耗力,准确性受限于操作人员的经验和技能。近年来,深度学习技术在图像识别领域的突破性进展为金属表面缺陷检测提供了新的解决方案,基于深度学习的金属表面... 金属表面的划痕、凹坑、波纹等缺陷会直接影响产品的质量。传统的检测方法耗时耗力,准确性受限于操作人员的经验和技能。近年来,深度学习技术在图像识别领域的突破性进展为金属表面缺陷检测提供了新的解决方案,基于深度学习的金属表面缺陷检测方法在检测精度和速度方面取得了显著成效。为了便于金属表面缺陷检测算法的研究,综合分析了单阶段深度学习算法在金属表面缺陷检测中的优化方法及应用。介绍了目前常用的金属表面缺陷数据集和算法评价指标;总结了目标检测算法的发展史以及单阶段目标检测算法的基本概念和典型模型;从数据增强、特征的提取与融合、锚框优化三个方面,对比总结了不同算法不同优化方式的优缺点,并研究了金属表面缺陷检测算法的轻量化;从多模态融合、大数据应用技术、现实与虚拟结合三个方面对金属表面缺陷检测算法的未来研究方向进行了展望。 展开更多
关键词 金属表面缺陷检测 深度学习 阶段目标检测算法 模型优化
在线阅读 下载PDF
改进全卷积神经网络的遥感图像小目标检测 被引量:1
5
作者 徐雪峰 郭广伟 黄余 《机械设计与制造》 北大核心 2024年第10期38-42,共5页
对遥感图像中小目标的检测进行研究,提出改进全卷积神经网络的检测新算法。首先,分析了分层概率图模型和深度学习的基本概念和模型。然后,提出分层概率图模型中分层马尔可夫随机场的后验边际模式的递归获取步骤。最后,将全卷积神经网络... 对遥感图像中小目标的检测进行研究,提出改进全卷积神经网络的检测新算法。首先,分析了分层概率图模型和深度学习的基本概念和模型。然后,提出分层概率图模型中分层马尔可夫随机场的后验边际模式的递归获取步骤。最后,将全卷积神经网络和分层概率图模型联合,实现对全卷积神经网络的改进,构建遥感图像小目标检测新方法。此外,在所提方法中,选用随机森林技术从分类学习样本中估计每个类和分辨率的后验概率。基于对某地区卫星数据集的处理,将所提出的检测方法与其他四种方法进行了对比。对比实验结果表明,与其他方法相比,所提出的检测方法对低矮植被、车辆、树等遥感图像中的小目标具有更高的检测准确率。 展开更多
关键词 目标检测 遥感图像 卷积神经网络 分层概率图模型 随机森林
在线阅读 下载PDF
基于转置卷积操作改进的单阶段多边框目标检测方法 被引量:8
6
作者 郭川磊 何嘉 《计算机应用》 CSCD 北大核心 2018年第10期2833-2838,共6页
针对单阶段多边框目标检测(SSD)模型在以高交并比(Io U)评估平均检测精度(m AP)时出现的精度下降问题,提出一种使用转置卷积操作构建的循环特征聚合模型。该模型以SSD模型为基础,使用Res Net 101作为特征提取网络。首先,利用转置卷积操... 针对单阶段多边框目标检测(SSD)模型在以高交并比(Io U)评估平均检测精度(m AP)时出现的精度下降问题,提出一种使用转置卷积操作构建的循环特征聚合模型。该模型以SSD模型为基础,使用Res Net 101作为特征提取网络。首先,利用转置卷积操作扩大网络结构中深层特征图的尺寸,为浅层特征图引入对目标的高层抽象和上下文信息;其次,使用全连接卷积层减少浅层特征图在进行特征聚合时出现偏差的可能性;最后,将浅层特征图与表示了上下文信息的深层特征图拼接,并使用1×1卷积操作恢复通道数。特征聚合过程可以循环进行多次。实验结果表明,使用KITTI数据集,以交并比(Io U)为0. 7评估平均检测精度,与原始SSD模型相比,循环特征聚合模型的检测精度提高了5. 1个百分点;与已有的精度最高Faster R-CNN相比,检测精度提高了2个百分点。循环特征聚合模型能有效提升平均目标检测精度,生成高质量的边界框。 展开更多
关键词 目标检测 转置卷积 特征聚合 阶段多边框目标检测模型
在线阅读 下载PDF
深度学习驱动下的目标检测研究进展综述 被引量:7
7
作者 山显英 张琳 李泽慧 《计算机工程与应用》 北大核心 2025年第1期24-41,共18页
近年来,深度学习在GPU高性能计算能力的加持下得到了迅速推广,并在安防、医疗、工业等领域实现了广泛应用。目标检测模型的性能也在稳步提高,从传统的目标检测方法逐渐过渡到基于卷积神经网络(CNN)深度学习的进一步应用,极大地节省了人... 近年来,深度学习在GPU高性能计算能力的加持下得到了迅速推广,并在安防、医疗、工业等领域实现了广泛应用。目标检测模型的性能也在稳步提高,从传统的目标检测方法逐渐过渡到基于卷积神经网络(CNN)深度学习的进一步应用,极大地节省了人力物力。通过参考大量文献,按照两阶段脉络梳理了目标检测的发展历程以及近年深度学习在目标检测领域内的研究进展,对比了在不同数据集上模型网络的性能,总结不同方法的优势与不足,并对领域内重要数据集作了归纳,还对目标检测算法的落地效果做了总结,特别是生活与科技中的实际应用(无人驾驶、医学图像、遥感等)。最后,还对深度学习驱动下目标检测在未来研究上的机遇和挑战作了展望。 展开更多
关键词 目标检测 卷积神经网络 阶段 阶段 目标检测应用
在线阅读 下载PDF
特征金字塔多尺度全卷积目标检测算法 被引量:19
8
作者 林志洁 罗壮 +1 位作者 赵磊 鲁东明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第3期533-540,共8页
基于区域建议网络构建一种特征金字塔多尺度网络结构,并结合全卷积操作完成微小目标与类别无关目标的检测.为了提升图像中微小目标的检测精度,构建基于侧链接融合的3层金字塔结构网络,充分利用语义级别比较低的图像卷积特征.为了提高类... 基于区域建议网络构建一种特征金字塔多尺度网络结构,并结合全卷积操作完成微小目标与类别无关目标的检测.为了提升图像中微小目标的检测精度,构建基于侧链接融合的3层金字塔结构网络,充分利用语义级别比较低的图像卷积特征.为了提高类别无关的图像目标检测鲁棒性,提出特定的非极大值抑制算法,在重叠目标过滤时消除冗余目标窗口,并对目标窗口进行位置精修.在PASCAL VOC 2007、PASCAL VOC 2012以及古代绘画数据集上的实验结果表明:所提算法对于微小目标、多尺度目标检测及种类无关的目标检测的检测精度高于已有算法. 展开更多
关键词 图像目标检测 图像特征金字塔 多尺度卷积 微小目标检测 类别无关目标检测
在线阅读 下载PDF
基于全卷积神经网络的遥感图像海面目标检测 被引量:10
9
作者 喻钧 康秦瑀 +3 位作者 陈中伟 初苗 胡志毅 姚红革 《弹箭与制导学报》 北大核心 2020年第5期15-19,23,共6页
针对通常的神经网络算法在检测遥感图像海面目标时存在精确率低、漏检概率高的问题,改进了一种基于YOLOv3全卷积神经网络的遥感图像海面目标检测方法。首先根据海面目标的宽高比例,利用Kmeans++聚类算法,确定出适合于数据集的anchor box... 针对通常的神经网络算法在检测遥感图像海面目标时存在精确率低、漏检概率高的问题,改进了一种基于YOLOv3全卷积神经网络的遥感图像海面目标检测方法。首先根据海面目标的宽高比例,利用Kmeans++聚类算法,确定出适合于数据集的anchor box值;接着采用FPN思想进行特征融合;最后,选用GIOU作为坐标预测的损失函数,进一步优化检测结果。实验表明:文中方法在遥感图像海面目标检测中的平均精确率为90.82%,相比于其他算法平均提高了5.34%。 展开更多
关键词 YOLOv3 卷积神经网络 遥感图像 目标检测
在线阅读 下载PDF
基于单阶段网络模型的目标检测改进算法 被引量:11
10
作者 王燕妮 刘祥 刘江 《探测与控制学报》 CSCD 北大核心 2021年第2期56-62,68,共8页
针对目前单阶段目标检测算法中存在的误检、漏检以及检测精度不够高等问题,提出一种基于单阶段网络模型的目标检测改进算法。该算法使用深度残差网络对基础网络进行替换,提取更优秀的特征;增加一层用于检测小目标的底层特征图;结合反卷... 针对目前单阶段目标检测算法中存在的误检、漏检以及检测精度不够高等问题,提出一种基于单阶段网络模型的目标检测改进算法。该算法使用深度残差网络对基础网络进行替换,提取更优秀的特征;增加一层用于检测小目标的底层特征图;结合反卷积和特征融合的方法,对提取出的高层特征图与底层特征图进行融合,使新的特征图中包含更丰富的上下文信息;设计更密集的检测框且在每层卷积层后都添加批规范化操作以提升模型训练速度,防止过拟合。仿真实验结果表明,改进算法在PASCAL VOC2007数据集上较原始算法检测精度提升1.3%,检测效果更加准确,同时改进算法显著改善了误检、漏检等问题;但由于网络复杂度过高,导致检测速度有所下降。 展开更多
关键词 目标检测 阶段多框目标检测 深度残差网络 特征融合
在线阅读 下载PDF
特征增强的单阶段遥感图像目标检测模型 被引量:7
11
作者 汪西莉 梁敏 刘涛 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第3期160-170,共11页
随着卷积神经网络的发展,遥感图像目标检测性能提升明显,但场景的复杂性和目标大小、形态的多样性依然对目标检测带来挑战。针对复杂情况下不同大小目标的检测问题进行研究。特征金字塔结构是解决不同大小目标检测的有效方法,但其逐层... 随着卷积神经网络的发展,遥感图像目标检测性能提升明显,但场景的复杂性和目标大小、形态的多样性依然对目标检测带来挑战。针对复杂情况下不同大小目标的检测问题进行研究。特征金字塔结构是解决不同大小目标检测的有效方法,但其逐层传递特征的方式可能产生特征丢失问题,故提出跳跃连接特征金字塔模块来增强特征金字塔结构中各层特征的语义和细节信息。同时,使用位置注意力强化目标区域特征是提升目标检出率的有效方法,并有助于复杂场景下目标的检测,但现有的位置注意力往往同时强化了不精确的预测结果,对最终预测结果产生干扰。为此提出基于锚框的位置注意力模块,强化更可能产生精确预测结果的特征区域。将跳跃连接特征金字塔模块和基于锚框的位置注意力模块嵌入到RetinaNet模型中,形成端到端的特征增强的单阶段遥感图像目标检测模型FENet(Feature Enhanced Network)。针对复杂的遥感影像目标检测进行实验,在UCAS-AOD数据集上FENet模型mAP比FAN(Face Attention Network)高1.78%,在RSOD数据集上比FAN模型提升了1.48%,且超越了其他先进模型。此外,FENet在单块Titan X GPU上对800×800图像的测试时间是0.058 s。实验结果表明,与同类模型相比,所提模型增强了目标的特征提取能力,进而提升了检测性能。 展开更多
关键词 遥感图像 特征金字塔 位置注意力 锚框 阶段目标检测
在线阅读 下载PDF
基于全卷积神经网络的空间目标检测追踪算法 被引量:5
12
作者 陈梅 朱凌寒 +1 位作者 曾梓浩 赵坤鹏 《传感器与微系统》 CSCD 2019年第10期150-153,共4页
针对机器人图形化示教编程系统中复杂背景对示教物的检测产生干扰的问题,提出一种基于全卷积神经网络的空间目标检测追踪算法。通过网络训练,识别目标、分割图像,经简单二值化、形态学处理去噪点,求取最大连通域的质心,利用双目视觉空... 针对机器人图形化示教编程系统中复杂背景对示教物的检测产生干扰的问题,提出一种基于全卷积神经网络的空间目标检测追踪算法。通过网络训练,识别目标、分割图像,经简单二值化、形态学处理去噪点,求取最大连通域的质心,利用双目视觉空间坐标转换确定目标位置。实验结果表明:对比现有普通算法,该算法可针对性识别目标,扩大示教物运动范围,降低示教复杂轨迹的难度,提高对机器人的控制精度。 展开更多
关键词 机器人 示教编程系统 卷积神经网络 目标检测与追踪
在线阅读 下载PDF
基于区域全卷积网络的变电站识别监控技术
13
作者 张亚平 王楚源 程泓博 《沈阳工业大学学报》 北大核心 2025年第4期439-447,共9页
【目的】变电站作为电力传输和分配的核心枢纽,其安全稳定运行是保障电力系统高效、可靠供电的关键。然而,传统的变电站监控方式存在自动监控能力有限、目标监测精度欠佳等问题,难以满足当下电力系统日益增长的安全需求。本研究致力于... 【目的】变电站作为电力传输和分配的核心枢纽,其安全稳定运行是保障电力系统高效、可靠供电的关键。然而,传统的变电站监控方式存在自动监控能力有限、目标监测精度欠佳等问题,难以满足当下电力系统日益增长的安全需求。本研究致力于开发一种基于区域全卷积网络(R-FCN)的变电站目标识别与安全监控技术,旨在攻克传统监控方式的短板,大幅提升变电站安全保障的整体水平,为电力系统的稳健运行筑牢根基。【方法】方法融合了区域提取和全卷积网络的独特优势,构建起一套高效智能的监控体系。在数据采集环节,部署高清视频监控摄像头,从多个角度全方位、不间断地实时捕捉变电站内的图像数据,为后续的深度分析提供海量且精准的原始素材。针对采集到的图像,运用先进的R-FCN模型进行目标检测。R-FCN凭借其全卷积特性在处理不同尺寸的图像时能够巧妙地维持特征图的高分辨率,避免了传统方法在降采样过程中容易出现的信息丢失问题,极大地提高了目标监测的精度。同时,精心设计并引入区域提取模块,该模块犹如智能导航系统,能够在错综复杂的变电站背景中,精准定位各类关键设施,确保对设备的运行状态进行实时、精准的监测。对于异常行为,如人员未经授权闯入危险区域、设备突发冒烟起火等,也能及时察觉,为后续的应急处置争取宝贵时间。【结果】通过大量的模拟实验以及在实际变电站监控场景中的测试验证,本系统展现出了卓越的性能表现。在与传统目标监测方法的对比实验中,本系统的目标监测准确率相较于传统方法有了显著提升,有效提高了监控的可靠性,避免了不必要的人力、物力。【结论】基于R-FCN的变电站目标识别与安全监控技术,兼具高效的实时处理能力和精准的目标定位能力。在面对海量监控数据时,能够迅速做出响应,快速准确地识别各类目标和异常情况,为电力系统的安全稳定运行提供了强有力的技术支撑,对提升变电站整体监控水平、保障电力系统的可靠供电具有深远意义。 展开更多
关键词 视频监控 目标检测 烟雾检测 区域卷积网络 变电站 监控 异常行为监测 智能监控体系
在线阅读 下载PDF
深度学习中的单阶段小目标检测方法综述 被引量:68
14
作者 李科岑 王晓强 +4 位作者 林浩 李雷孝 杨艳艳 孟闯 高静 《计算机科学与探索》 CSCD 北大核心 2022年第1期41-58,共18页
随着深度学习的不断发展,目标检测技术逐步从基于传统的手工检测方法向基于深度神经网络的检测方法转变。在众多基于深度学习的目标检测方法中,基于深度学习的单阶段目标检测方法因其网络结构较简单、运行速度较快以及具有更高的检测效... 随着深度学习的不断发展,目标检测技术逐步从基于传统的手工检测方法向基于深度神经网络的检测方法转变。在众多基于深度学习的目标检测方法中,基于深度学习的单阶段目标检测方法因其网络结构较简单、运行速度较快以及具有更高的检测效率而被广泛运用。但现有的基于深度学习的单阶段目标检测方法由于小目标物体包含的特征信息较少、分辨率较低、背景信息较复杂、细节信息不明显以及定位精度要求较高等原因,导致在检测过程中对小目标物体的检测效果不理想,使得模型检测精度降低。针对目前基于深度学习的单阶段目标检测方法存在的问题,研究了大量基于深度学习的单阶段小目标检测技术。首先从单阶段目标检测方法的AnchorBox、网络结构、交并比函数以及损失函数等几个方面,系统地总结了针对小目标检测的优化方法;其次列举了常用的小目标检测数据集及其应用领域,并给出在各小目标检测数据集上的检测结果图;最后探讨了基于深度学习的单阶段小目标检测方法的未来研究方向。 展开更多
关键词 深度学习 阶段目标检测 目标检测
在线阅读 下载PDF
融合全卷积神经网络和视觉显著性的红外小目标检测 被引量:21
15
作者 刘俊明 孟卫华 《光子学报》 EI CAS CSCD 北大核心 2020年第7期40-50,共11页
为提高复杂背景和噪声干扰下红外小目标检测性能,提出了融合深度神经网络和视觉目标显著性的单阶段红外小目标检测算法.首先设计了基于编码器-解码器架构的轻量级全卷积神经网络对红外图像进行分割,实现背景抑制和目标增强;然后利用红... 为提高复杂背景和噪声干扰下红外小目标检测性能,提出了融合深度神经网络和视觉目标显著性的单阶段红外小目标检测算法.首先设计了基于编码器-解码器架构的轻量级全卷积神经网络对红外图像进行分割,实现背景抑制和目标增强;然后利用红外小目标的显著性特征进一步抑制虚警;最后采用自适应阈值法分离出小目标.网络结构中通过引入多个下采样层降低计算量并增大感受野;通过引入多尺度特征提升背景抑制能力;通过引入注意力机制提升模型训练效果.在真实红外图像上的测试表明,本文算法在检测率、虚警率和运算时间等方面都优于典型红外小目标检测算法,适合进行复杂背景下的红外小目标检测. 展开更多
关键词 深度学习 目标检测 红外 卷积神经网络 多尺度特征 显著性 目标
在线阅读 下载PDF
基于深度学习的单阶段目标检测算法研究综述 被引量:53
16
作者 刘俊明 孟卫华 《航空兵器》 CSCD 北大核心 2020年第3期44-53,共10页
近年来,深度学习技术推动目标检测算法取得了突破式进展。基于深度学习的目标检测算法可分为两阶段检测算法和单阶段检测算法。相比两阶段检测算法,单阶段检测算法的结构简单、计算高效,同时具备不错的检测精度,在实时目标检测领域中具... 近年来,深度学习技术推动目标检测算法取得了突破式进展。基于深度学习的目标检测算法可分为两阶段检测算法和单阶段检测算法。相比两阶段检测算法,单阶段检测算法的结构简单、计算高效,同时具备不错的检测精度,在实时目标检测领域中具有较高的研究和应用价值。本文首先回顾了单阶段检测算法的发展历史,分析总结了相关算法的优缺点,然后归纳提出了单阶段目标检测算法的通用框架,接着对框架中的特征提取模块和检测器进行了深入分析,指出了其对算法性能的影响,最后对单阶段检测算法的发展趋势进行了展望。 展开更多
关键词 深度学习 阶段目标检测算法 特征提取 特征融合 ANCHOR 损失函数 人工智能
在线阅读 下载PDF
基于注意力机制的单阶段目标检测锚点框部件感知特征表达 被引量:2
17
作者 唐乾坤 胡瑜 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第8期1293-1304,共12页
针对现有单阶段目标检测算法锚点框特征表达不足影响检测精度的问题,提出了一种增强锚点框特征表达的算法,其包含注意力机制模块和部件感知模块.首先,注意力机制模块根据各个锚点框的不同属性自适应地提供不同的特征表达.然后,部件感知... 针对现有单阶段目标检测算法锚点框特征表达不足影响检测精度的问题,提出了一种增强锚点框特征表达的算法,其包含注意力机制模块和部件感知模块.首先,注意力机制模块根据各个锚点框的不同属性自适应地提供不同的特征表达.然后,部件感知模块准确地提取各个锚点框内部的判别性部件特征以作为各个锚点框进行预测所需的特有特征.将所提设计与现有SSD算法结合并在多个公开的目标检测数据集上进行实验,结果表明,所提算法能够显著提高单阶段目标检测算法的精度并维持实时运行速度(14 ms);进一步地,在扩展实验上的结果表明,所提算法也能够改善生成的区域建议框的召回率及两阶段目标检测算法的精度. 展开更多
关键词 卷积神经网络 阶段目标检测 区域建议框 注意力模块 部件感知模块
在线阅读 下载PDF
基于正负锚点框均衡及特征对齐的单阶段目标检测算法 被引量:2
18
作者 唐乾坤 胡瑜 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第11期1773-1783,共11页
针对正负例锚点框不均衡将降低基于锚点框的单阶段目标检测算法的检测精度的问题,提出一种包含锚点框提升模块和特征对齐模块来均衡正负例锚点框的算法.首先在锚点框提升模块中预测各个锚点框为正例的可能性,并粗略调整初始锚点框的位... 针对正负例锚点框不均衡将降低基于锚点框的单阶段目标检测算法的检测精度的问题,提出一种包含锚点框提升模块和特征对齐模块来均衡正负例锚点框的算法.首先在锚点框提升模块中预测各个锚点框为正例的可能性,并粗略调整初始锚点框的位置和尺寸;然后在特征对齐模块中为调整后的锚点框提取预测所需的对齐特征;最后检测网络借助锚点框提升模块输出信息,从调整后的锚点框中识别出简单负例锚点框,并在训练阶段忽略其梯度.将文中算法应用于以VGG-16和ResNet-101为特征提取网络的编解码架构中,在目标检测数据集MS COCO和PASCAL VOC上进行实验,结果表明,该算法能够显著改善不均衡问题,提高单阶段目标检测算法的检测精度(MS COCO和PASCAL VOC上的精度分别为42.8%和82.7%),并维持28.6帧/s的实时运行速度. 展开更多
关键词 卷积神经网络 阶段目标检测 锚点框正负例不均衡 锚点框提升模块 特征对齐模块
在线阅读 下载PDF
单阶段多框检测器无人机航拍目标识别方法 被引量:9
19
作者 朱槐雨 李博 《计算机应用》 CSCD 北大核心 2021年第11期3234-3241,共8页
无人机(UAV)航拍图像视野开阔,图像中的目标较小且边缘模糊,而现有单阶段多框检测器(SSD)目标检测模型难以准确地检测航拍图像中的小目标。为了有效地解决原有模型容易漏检的问题,借鉴特征金字塔网络(FPN)提出了一种基于连续上采样的SS... 无人机(UAV)航拍图像视野开阔,图像中的目标较小且边缘模糊,而现有单阶段多框检测器(SSD)目标检测模型难以准确地检测航拍图像中的小目标。为了有效地解决原有模型容易漏检的问题,借鉴特征金字塔网络(FPN)提出了一种基于连续上采样的SSD模型。改进SSD模型将输入图像尺寸调整为320×320,新增Conv3_3特征层,将高层特征进行上采样,并利用特征金字塔结构对VGG16网络前5层特征进行融合,从而增强各个特征层的语义表达能力,同时重新设计先验框的尺寸。在公开航拍数据集UCAS-AOD上训练并验证,实验结果表明,所提改进SSD模型的各类平均精度均值(mAP)达到了94.78%,与现有SSD模型相比,其准确率提升了17.62%,其中飞机类别提升了4.66%,汽车类别提升了34.78%。 展开更多
关键词 航拍图像 卷积神经网络 目标检测 阶段多框检测 特征融合
在线阅读 下载PDF
多尺度上下文信息增强的显著目标检测全卷积网络 被引量:10
20
作者 凌艳 陈莹 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第11期2007-2016,共10页
针对目前基于深度学习的显著目标检测算法存在的目标完整性和区域平滑度的不足,基于非局部深度特征提出一种多尺度上下文信息增强的全卷积网络算法,包含多级别特征提取、多尺度上下文特征增强、对比度特征提取和局部-全局信息融合预测4... 针对目前基于深度学习的显著目标检测算法存在的目标完整性和区域平滑度的不足,基于非局部深度特征提出一种多尺度上下文信息增强的全卷积网络算法,包含多级别特征提取、多尺度上下文特征增强、对比度特征提取和局部-全局信息融合预测4个模块.首先从VGG16模型提取多级别局部特征,利用多尺度上下文实现特征信息增强;然后设计组合的损失函数进行网络训练以学习对比度特征;最后用局部-全局融合的方式实现显著图的预测.与已有算法在ECSSD,HKU-IS和DUT-OMRON数据集上进行实验的结果表明,该算法在复杂场景图像上的鲁棒性更好,对背景噪声具有更有效的抑制作用,得到的显著目标区域更加连续和完整. 展开更多
关键词 显著目标检测 多尺度上下文 卷积网络 显著图
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部