期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于单输出切比雪夫多项式神经网络的海洋矿物分类
1
作者 金龙 陈秀芳 +1 位作者 陈良铭 付金山 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第12期135-143,共9页
针对海洋矿物分类问题,提出了改进后的单输出切比雪夫多项式神经网络(single-output Chebyshev-polynomial neural network with general solution,SOCPNN-G)。该模型利用伪逆的通解来求参数,扩大解空间,能获得泛化性能更加优良的权重... 针对海洋矿物分类问题,提出了改进后的单输出切比雪夫多项式神经网络(single-output Chebyshev-polynomial neural network with general solution,SOCPNN-G)。该模型利用伪逆的通解来求参数,扩大解空间,能获得泛化性能更加优良的权重。在该模型中,子集方法用于确定神经元的初始数量和获得交叉验证的最佳重数。最后将改进的SOCPNN-G模型用于海洋矿物数据集中进行实验,结果表明,该模型训练准确率和测试准确率分别达到90.96%和83.33%,且对计算性能要求较低。这些优越性表明该模型在海洋矿物的实际应用中具有很好的前景。 展开更多
关键词 海洋矿物 分类 单输出切比雪夫多项式神经网络 权重 准确率
在线阅读 下载PDF
切比雪夫函数型连接神经网络在信道均衡中的应用 被引量:2
2
作者 胡志恒 王炎滨 虞厥邦 《信号处理》 CSCD 2003年第4期287-290,共4页
本文提出一种基于切比雪夫函数型连接神经网络(CFLNN)的信道均衡方法。传统的前馈神经网络虽然能有效地解决信道均衡的问题,但具有计算复杂度过高,收敛速度慢等缺点。函数型连接神经网络通过对输入模式进行非线性扩展,可以不必使用隐层... 本文提出一种基于切比雪夫函数型连接神经网络(CFLNN)的信道均衡方法。传统的前馈神经网络虽然能有效地解决信道均衡的问题,但具有计算复杂度过高,收敛速度慢等缺点。函数型连接神经网络通过对输入模式进行非线性扩展,可以不必使用隐层而不降低整体性能,从而极大简化了网络结构。同时,神经网络的学习方法得以简化,提高了收敛速度。本文采用可变尺度共扼梯度下降法(SCG)对该函数型连接网络进行训练。仿真结果表明了用切比雪夫函数型连接神经网络解决信道均衡问题的有效性。 展开更多
关键词 信道均衡 码序列 数字通信 比雪夫多项式 函数型连接神经网络
在线阅读 下载PDF
多元切比雪夫神经网络及其快速权值确定算法 被引量:1
3
作者 邢永康 石杨 牟超 《计算机工程与应用》 CSCD 2013年第13期36-39,109,共5页
与传统的多层感知器模型相比,切比雪夫神经网络具有收敛速度快,复杂度低,泛化能力强等优点,但是,其研究最为广泛的一元切比雪夫神经网络在解决实际应用中的多元问题时存在着很大局限。鉴于此,对一元切比雪夫神经网络进行扩展,提出了多... 与传统的多层感知器模型相比,切比雪夫神经网络具有收敛速度快,复杂度低,泛化能力强等优点,但是,其研究最为广泛的一元切比雪夫神经网络在解决实际应用中的多元问题时存在着很大局限。鉴于此,对一元切比雪夫神经网络进行扩展,提出了多元切比雪夫神经网络模型,并在切比雪夫多项式正交性的基础上给出了快速权值确定算法。仿真实验证明,相对于传统多层感知器神经网络,该方法在计算精度和计算速度等方面都存在明显优势。 展开更多
关键词 神经网络 比雪夫多项式 多元函数 权值快速计算
在线阅读 下载PDF
沉降监测多项式回归分析与神经网络预测 被引量:2
4
作者 田丰 文鸿雁 张静 《海洋测绘》 2007年第4期23-27,共5页
使用多项式和切比雪夫(Tchebyshev)多项式分别对沉降监测数据进行回归分析以预测未来沉降值,其中切比雪夫多项式的外推效果较好;应用前向BP神经网络对两种不同的单因子输入模式进行非线性函数逼近,并进行了不同采样步长的比较,实例表明... 使用多项式和切比雪夫(Tchebyshev)多项式分别对沉降监测数据进行回归分析以预测未来沉降值,其中切比雪夫多项式的外推效果较好;应用前向BP神经网络对两种不同的单因子输入模式进行非线性函数逼近,并进行了不同采样步长的比较,实例表明将时间点作为网络的输入对沉降进行预测效果较好。 展开更多
关键词 沉降监测 多项式回归 比雪夫多项式 神经网络预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部