冷水机组系统中,温度传感器出现故障会严重影响机组工作效率及使用寿命。针对冷水机组温度传感器偏差故障,本文提出一种基于单类支持向量机(one-class support vector machine,OC-SVM)的故障检测方法,采用冷水机组正常数据建立OC-SVM模...冷水机组系统中,温度传感器出现故障会严重影响机组工作效率及使用寿命。针对冷水机组温度传感器偏差故障,本文提出一种基于单类支持向量机(one-class support vector machine,OC-SVM)的故障检测方法,采用冷水机组正常数据建立OC-SVM模型,通过十折交叉验证法获得模型优化参数。分别采用工程实测数据和实验数据(共4组)对该方法进行了验证,结果表明:基于OC-SVM的方法能有效检测出4组冷水机组的温度传感器偏差故障。其中对于螺杆式冷水机组(数据集Ⅰ)的故障检测效果明显,当冷冻水侧温度传感器偏差故障幅值绝对值大于1℃时,检测效率达到100%。展开更多
为了实现对高光谱图像中的目标自动检测,提出了一种基于空间上下文单类分类器的目标检测算法。对所采用的空间与光谱结合的特征、SVDD分类器原理、算法流程等进行研究。首先分析了支持向量数据描述(SVDD,support vector data descripti...为了实现对高光谱图像中的目标自动检测,提出了一种基于空间上下文单类分类器的目标检测算法。对所采用的空间与光谱结合的特征、SVDD分类器原理、算法流程等进行研究。首先分析了支持向量数据描述(SVDD,support vector data description)的单类分类原理。接着,结合高光谱图像特点,介绍了如何利用空间上下文信息和光谱特征作为SVDD分类器输入特征。然后,在分析比较空间光谱结合单类分类器性能的基础上,说明了采用该算法的原理。最后,给出了该算法的具体实现方法。实验结果表明:该方法优于常规的直接利用光谱信息的CEM等算法,在AVIRIS成像的某国外海军基地数据中,检测飞机目标的精度达到了90%以上。基本满足目标检测的稳定可靠、低虚警率、高识别率等要求。展开更多
文章在负例抽取阶段考虑用户的活跃度和项目间相似度,以及在概率矩阵分解时融合用户好友关系和项目标签社会化信息的基础上,提出了一种融合社会化信息的改进单类协同过滤(one class collaborative filtering with social information,OC...文章在负例抽取阶段考虑用户的活跃度和项目间相似度,以及在概率矩阵分解时融合用户好友关系和项目标签社会化信息的基础上,提出了一种融合社会化信息的改进单类协同过滤(one class collaborative filtering with social information,OCCF-SI)方法,并在科研社交网络CiteULike的真实数据集上进行了实验。研究结果表明,与其他传统的推荐方法相比,该文所提出的方法取得了较好的推荐结果,具有良好的可扩展性。展开更多
文摘冷水机组系统中,温度传感器出现故障会严重影响机组工作效率及使用寿命。针对冷水机组温度传感器偏差故障,本文提出一种基于单类支持向量机(one-class support vector machine,OC-SVM)的故障检测方法,采用冷水机组正常数据建立OC-SVM模型,通过十折交叉验证法获得模型优化参数。分别采用工程实测数据和实验数据(共4组)对该方法进行了验证,结果表明:基于OC-SVM的方法能有效检测出4组冷水机组的温度传感器偏差故障。其中对于螺杆式冷水机组(数据集Ⅰ)的故障检测效果明显,当冷冻水侧温度传感器偏差故障幅值绝对值大于1℃时,检测效率达到100%。
文摘为了实现对高光谱图像中的目标自动检测,提出了一种基于空间上下文单类分类器的目标检测算法。对所采用的空间与光谱结合的特征、SVDD分类器原理、算法流程等进行研究。首先分析了支持向量数据描述(SVDD,support vector data description)的单类分类原理。接着,结合高光谱图像特点,介绍了如何利用空间上下文信息和光谱特征作为SVDD分类器输入特征。然后,在分析比较空间光谱结合单类分类器性能的基础上,说明了采用该算法的原理。最后,给出了该算法的具体实现方法。实验结果表明:该方法优于常规的直接利用光谱信息的CEM等算法,在AVIRIS成像的某国外海军基地数据中,检测飞机目标的精度达到了90%以上。基本满足目标检测的稳定可靠、低虚警率、高识别率等要求。
文摘文章在负例抽取阶段考虑用户的活跃度和项目间相似度,以及在概率矩阵分解时融合用户好友关系和项目标签社会化信息的基础上,提出了一种融合社会化信息的改进单类协同过滤(one class collaborative filtering with social information,OCCF-SI)方法,并在科研社交网络CiteULike的真实数据集上进行了实验。研究结果表明,与其他传统的推荐方法相比,该文所提出的方法取得了较好的推荐结果,具有良好的可扩展性。