以工作于电感电流连续导电模式(continuous conductionmode, CCM)的单电感双输出(single-inductor dual-output,SIDO)Boost变换器为研究对象,提出恒定谷值电流型(fixed valley current mode,FVCM)变频控制技术。详细分析FVCM变频控制CCM...以工作于电感电流连续导电模式(continuous conductionmode, CCM)的单电感双输出(single-inductor dual-output,SIDO)Boost变换器为研究对象,提出恒定谷值电流型(fixed valley current mode,FVCM)变频控制技术。详细分析FVCM变频控制CCMSIDOBoost变换器的工作原理及工作时序,得到开关频率与主电路参数以及谷值电流参考值的关系式。采用时间平均等效电路建模方法,推导CCM SIDO Boost变换器的控制–输出、控制–电感电流、交叉影响阻抗等传递函数。建立FVCM变频控制CCMSIDO Boost变换器的小信号模型,计算闭环输出阻抗和交叉影响阻抗传递函数,并从负载瞬态性能和交叉影响特性两方面,与传统的共模–差模电压型控制进行对比分析。研究结果表明:与共模–差模电压型控制相比,FVCM变频控制提高了CCMSIDOBoost变换器的瞬态响应速度,抑制了输出支路间的交叉影响。最后,通过仿真和实验验证理论分析的正确性。展开更多
该文以单电感双输出(SIDO)Boost变换器为研究对象,详细分析电感电流工作于连续导电模式(CCM)的共模-差模电压型(CMV-DMV)控制SIDO Boost变换器的工作原理。采用时间平均等效电路建模方法,推导主电路的控制-输出、输出阻抗、交叉影响阻...该文以单电感双输出(SIDO)Boost变换器为研究对象,详细分析电感电流工作于连续导电模式(CCM)的共模-差模电压型(CMV-DMV)控制SIDO Boost变换器的工作原理。采用时间平均等效电路建模方法,推导主电路的控制-输出、输出阻抗、交叉影响阻抗等传递函数。在此基础上,建立CMV-DMV控制CCM SIDO Boost变换器的闭环小信号模型,并利用Bode图从频域的角度分析变换器两条输出支路在不同输出电压等级下的交叉影响特性。研究结果表明,在两路输出电压不等时,CMV-DMV控制CCM SIDO Boost变换器的高压输出支路对低压输出支路的交叉影响较小;在两路输出电压相等时,先导通输出支路对后导通输出支路的交叉影响较大。实验结果验证了理论分析的正确性。展开更多
提出了一种临界连续模式(CRM)单电感双输出(SIDO)Buck功率因数校正(PFC)变换器及其控制策略,并分析了其工作特性。通过对电感的分时复用控制,实现了2个输出支路的独立控制。在输入电压接近各输出支路电压情况下,控制器限制了开关管的最...提出了一种临界连续模式(CRM)单电感双输出(SIDO)Buck功率因数校正(PFC)变换器及其控制策略,并分析了其工作特性。通过对电感的分时复用控制,实现了2个输出支路的独立控制。在输入电压接近各输出支路电压情况下,控制器限制了开关管的最小关断时间,解决了工作于CRM时电感在输入电流过零点附近难以分时复用控制的问题,并抑制了电感在输入电流过零点附近的复用频率。相对于传统两级结构的多路输出PFC变换器,CRM SIDO Buck PFC变换器减少了控制器与电感的数量,降低了变换器的体积与成本,并提高了变换器的效率。实验结果验证了所提变换器高效率、高功率因数以及2个输出支路的高输出精度控制特性。展开更多
文摘以工作于电感电流连续导电模式(continuous conductionmode, CCM)的单电感双输出(single-inductor dual-output,SIDO)Boost变换器为研究对象,提出恒定谷值电流型(fixed valley current mode,FVCM)变频控制技术。详细分析FVCM变频控制CCMSIDOBoost变换器的工作原理及工作时序,得到开关频率与主电路参数以及谷值电流参考值的关系式。采用时间平均等效电路建模方法,推导CCM SIDO Boost变换器的控制–输出、控制–电感电流、交叉影响阻抗等传递函数。建立FVCM变频控制CCMSIDO Boost变换器的小信号模型,计算闭环输出阻抗和交叉影响阻抗传递函数,并从负载瞬态性能和交叉影响特性两方面,与传统的共模–差模电压型控制进行对比分析。研究结果表明:与共模–差模电压型控制相比,FVCM变频控制提高了CCMSIDOBoost变换器的瞬态响应速度,抑制了输出支路间的交叉影响。最后,通过仿真和实验验证理论分析的正确性。
文摘该文以单电感双输出(SIDO)Boost变换器为研究对象,详细分析电感电流工作于连续导电模式(CCM)的共模-差模电压型(CMV-DMV)控制SIDO Boost变换器的工作原理。采用时间平均等效电路建模方法,推导主电路的控制-输出、输出阻抗、交叉影响阻抗等传递函数。在此基础上,建立CMV-DMV控制CCM SIDO Boost变换器的闭环小信号模型,并利用Bode图从频域的角度分析变换器两条输出支路在不同输出电压等级下的交叉影响特性。研究结果表明,在两路输出电压不等时,CMV-DMV控制CCM SIDO Boost变换器的高压输出支路对低压输出支路的交叉影响较小;在两路输出电压相等时,先导通输出支路对后导通输出支路的交叉影响较大。实验结果验证了理论分析的正确性。
文摘提出了一种临界连续模式(CRM)单电感双输出(SIDO)Buck功率因数校正(PFC)变换器及其控制策略,并分析了其工作特性。通过对电感的分时复用控制,实现了2个输出支路的独立控制。在输入电压接近各输出支路电压情况下,控制器限制了开关管的最小关断时间,解决了工作于CRM时电感在输入电流过零点附近难以分时复用控制的问题,并抑制了电感在输入电流过零点附近的复用频率。相对于传统两级结构的多路输出PFC变换器,CRM SIDO Buck PFC变换器减少了控制器与电感的数量,降低了变换器的体积与成本,并提高了变换器的效率。实验结果验证了所提变换器高效率、高功率因数以及2个输出支路的高输出精度控制特性。