期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
基于无锚框模型目标检测任务的语义集中对抗样本
1
作者 谢云旭 吴锡 彭静 《计算机应用与软件》 北大核心 2025年第7期212-218,共7页
深度神经网络容易受到对抗样本的干扰。现有的针对无锚框目标检测器对抗样本的研究较为缺乏,导致此类模型更易受到对抗样本的影响。为改善这种情况,采用一种针对无锚框目标检测器的对抗样本通用框架,其基于识别到的类快速进行梯度收集,... 深度神经网络容易受到对抗样本的干扰。现有的针对无锚框目标检测器对抗样本的研究较为缺乏,导致此类模型更易受到对抗样本的影响。为改善这种情况,采用一种针对无锚框目标检测器的对抗样本通用框架,其基于识别到的类快速进行梯度收集,其比基于单个候选框生成扰动的方法效率更高。同时提出一个提取语义信息掩码的方法,使得对抗扰动仅集中于图像中语义信息丰富的区域,使得产生的扰动更为稀疏和集中。在两个数据集上的结果表明该方法在白盒和黑盒实验中都达到了最先进的性能,可为此类网络鲁棒性的改进优化提供支撑。 展开更多
关键词 对抗样本 语义信息 目标检测 无锚模型 深度学习
在线阅读 下载PDF
面向小目标检测结合特征金字塔网络的SSD改进模型 被引量:13
2
作者 张建明 刘煊赫 +1 位作者 吴宏林 黄曼婷 《郑州大学学报(理学版)》 CAS 北大核心 2019年第3期61-66,72,共7页
针对SSD卷积神经网络模型对小目标检测精度不高的问题,提出了一种基于特征金字塔网络的SSD改进模型.特征金字塔网络可以将深层的携带有更抽象、更丰富的语义信息的卷积特征图与浅层的分辨率更高、更细节的卷积特征图进行融合.检测的过... 针对SSD卷积神经网络模型对小目标检测精度不高的问题,提出了一种基于特征金字塔网络的SSD改进模型.特征金字塔网络可以将深层的携带有更抽象、更丰富的语义信息的卷积特征图与浅层的分辨率更高、更细节的卷积特征图进行融合.检测的过程是将原始SSD网络得到的多层特征图,经改进设计的横向连接层、上采样层、融合层和预测层处理后,再通过非极大值抑制得到最终的检测结果.采用PASCALVOC2007和2012(train+val)作为训练集,PASCALVOC2007(test)测试集的mAP达到了75.8%,相比原SSD模型提高了1.5%.其中,在盆栽植物类密集小目标检测上有9.9%的提升. 展开更多
关键词 目标检测 卷积神经网络 ssd模型 特征金字塔网络 特征图融合
在线阅读 下载PDF
一种基于双级剪枝和训练后量化的火灾检测轻量化模型设计方法
3
作者 徐鹏涛 王刚 +2 位作者 张连杰 王越 黄华 《北京大学学报(自然科学版)》 北大核心 2025年第5期884-890,共7页
针对火灾检测领域对高效、轻量级模型的迫切需求,以SSD目标检测算法为基础,搭建一种火灾检测轻量化模型。为减小模型规模,提高计算速度以及满足实际场景下的部署要求,采用剪枝和量化两种方法实现检测模型的轻量化。为实现模型网络在通... 针对火灾检测领域对高效、轻量级模型的迫切需求,以SSD目标检测算法为基础,搭建一种火灾检测轻量化模型。为减小模型规模,提高计算速度以及满足实际场景下的部署要求,采用剪枝和量化两种方法实现检测模型的轻量化。为实现模型网络在通道级和层级同时进行有效剪裁,提出一种基于可融合残差卷积块的双级剪枝方法。为了有效地提升该轻量化模型的性能,引入自适应方法,实现一种基于自适应离群值去除的训练后量化方法。实验结果表明,与原始方法相比,所提剪枝方法和量化方法表现出明显的优势,可在几乎不影响模型性能的情况下,显著地减小模型规模,同时保证火灾检测轻量化模型具有优异的性能。 展开更多
关键词 火灾检测 ssd目标检测 模型轻量化 剪枝 量化
在线阅读 下载PDF
用于内河船舶目标检测的单次多框检测器算法 被引量:24
4
作者 王言鹏 杨飏 姚远 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第7期1258-1262,共5页
针对传统目标检测算法在内河水运环境受外界条件影响过大的问题,本文提出了基于单次多框检测器的内河船舶目标检测方法。单次多框检测器模型基于卷积神经网络,使用全图各个位置的多尺度区域特征进行回归,使图像可以直接作为网络的输入,... 针对传统目标检测算法在内河水运环境受外界条件影响过大的问题,本文提出了基于单次多框检测器的内河船舶目标检测方法。单次多框检测器模型基于卷积神经网络,使用全图各个位置的多尺度区域特征进行回归,使图像可以直接作为网络的输入,避免了由于波浪、树叶晃动等外界因素产生的误检。同时,对于内河船舶样本不足的问题,应用样本增强和迁徙学习的方法训练船舶目标检测的网络模型,有效缓解了训练过程中的过拟合现象,取得了较好的检测效果。经内河不同地区的多组船舶视频检测表明:此方法具有更好的鲁棒性和更低的误检率,船舶的识别率均超过了90%,比传统的背景建模算法提高16%以上。 展开更多
关键词 目标检测 背景建模 内河 卷积神经网络 单次多检测 样本增强
在线阅读 下载PDF
嵌入遮挡关系模块的SSD模型的输电线路图像金具检测 被引量:11
5
作者 赵振兵 江爱雪 +2 位作者 戚银城 张薇 赵文清 《智能系统学报》 CSCD 北大核心 2020年第4期656-662,共7页
为了提升深度学习目标检测模型在输电线路金具自动化检测任务中的准确率,针对金具检测数据集中金具目标标注框之间不可避免地广泛存在相交而导致金具目标检测定位不准确的问题,本文利用相交区域的相似性作为金具目标的上下文信息,提出... 为了提升深度学习目标检测模型在输电线路金具自动化检测任务中的准确率,针对金具检测数据集中金具目标标注框之间不可避免地广泛存在相交而导致金具目标检测定位不准确的问题,本文利用相交区域的相似性作为金具目标的上下文信息,提出目标间遮挡关系的描述方法,用于规则性描述图像中金具目标间的相互遮挡,设计遮挡关系模块,并将其嵌入到单次多框检测器(single shot multibox detector,SSD)模型中。为了验证嵌入遮挡关系模块的SSD模型的有效性,选择了8类目标标注框普遍存在相交的小目标金具进行实验,实验使用的金具检测数据集的训练集和测试集中金具目标数分别为6271和1713。实验证明,原始SSD模型的平均精度均值(mean average precision,mAP)为72.10%,嵌入遮挡关系模块的SSD模型的m AP为76.56%,性能提升了4.46%。 展开更多
关键词 输电线路金具 遮挡度 遮挡关系描述 遮挡关系模块 ssd 标注 目标检测 深度学习
在线阅读 下载PDF
分段反卷积改进SSD的目标检测算法 被引量:7
6
作者 马跃 赵志浩 +3 位作者 尹震宇 樊超 柴安颖 李成蒙 《小型微型计算机系统》 CSCD 北大核心 2021年第7期1415-1420,共6页
针对当前SSD算法低层特征图语义信息不足导致存在小目标漏检以及误检的问题,提出一种基于分段反卷积改进SSD的目标检测算法SD-SSD(Segmented Deconvolution-Single Shot M ulti Box Detector).根据SSD模型低层特征图语义信息提取不足,... 针对当前SSD算法低层特征图语义信息不足导致存在小目标漏检以及误检的问题,提出一种基于分段反卷积改进SSD的目标检测算法SD-SSD(Segmented Deconvolution-Single Shot M ulti Box Detector).根据SSD模型低层特征图语义信息提取不足,高层特征图边缘信息丢失过多,本文重新设计了融合结构,不仅降低了计算过程中的参数数量,而且丰富了各个特征图的细节信息和语义信息;由于特征图反卷积的次数过多会增加噪声信息,本文将模型中高层特征图分成三段做分段反卷积与低层特征层融合;为增强小目标在模型下的检测效果,增加更低层次的特征图进行特征融合,着重检测小目标.在Pascal VOC2007测试集上进行验证,本文SD-SSD模型大幅度提高了小目标类别的AP值,mAP相对SSD模型和DSSD模型分别提高了4.30%和3.0%,相比目前主流单阶段目标检测算法,本文算法保持了较高的检测精度和检测速度. 展开更多
关键词 分段反卷积 特征融合 ssd模型 目标 目标检测算法
在线阅读 下载PDF
基于反卷积和特征融合的SSD小目标检测算法 被引量:14
7
作者 赵文清 周震东 翟永杰 《智能系统学报》 CSCD 北大核心 2020年第2期310-316,共7页
由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积... 由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积和特征融合的方法。先采用反卷积作用于浅层特征层,增大特征图分辨率,然后将SSD模型中卷积层conv112的特征图上采样,拼接得到新的特征层,最后将新的特征层与SSD模型中固有的4个尺度的特征层进行融合。通过将改进后的方法与VOC2007数据集和KITTI车辆检测数据集上的SSD和DSSD方法进行比较,结果表明:该方法降低了小目标的漏检率,并提升整体目标的平均检测准确率。 展开更多
关键词 目标检测 反卷积 特征映射 多尺度 特征融合 ssd模型 PASCAL VOC数据集 KITTI数据集
在线阅读 下载PDF
利用改进特征金字塔模型的SAR图像多目标船舶检测 被引量:8
8
作者 周慧 刘振宇 陈澎 《电讯技术》 北大核心 2020年第8期896-901,共6页
深度学习模型中的特征金字塔网络(Feature Pyramid Network,FPN)常被用作合成孔径雷达(Synthetic Aperture Radar,SAR)图像中多目标船舶的检测。针对复杂场景下多目标船舶检测问题,提出了一种基于改进锚点框的FPN模型。首先将特征金字... 深度学习模型中的特征金字塔网络(Feature Pyramid Network,FPN)常被用作合成孔径雷达(Synthetic Aperture Radar,SAR)图像中多目标船舶的检测。针对复杂场景下多目标船舶检测问题,提出了一种基于改进锚点框的FPN模型。首先将特征金字塔模型嵌入传统的RPN(Region Proposal Network)并映射成新的特征空间用于目标检测,然后利用基于形状相似度距离(Shape Similar Distance,SSD)度量的Kmeans聚类算法优化FPN的初始锚点框,并使用SAR船舶数据集测试。实验结果表明,所提算法目标检测精确率达到98.62%,在复杂场景下与YOLO、Faster RCNN、FPN based on VGG/ResNet等模型进行对比,模型准确率提高,整体性能更好。 展开更多
关键词 SAR图像 船舶多目标检测 锚点聚类 特征金字塔模型
在线阅读 下载PDF
改进SSD的灵武长枣图像轻量化目标检测方法 被引量:9
9
作者 王昱潭 薛君蕊 《农业工程学报》 EI CAS CSCD 北大核心 2021年第19期173-182,共10页
针对加载预训练模型的传统SSD(Single Shot MultiBox Detector)模型不能更改网络结构,设备内存资源有限时便无法使用的问题,该研究提出一种不使用预训练模型也能达到较高检测精度的灵武长枣图像轻量化目标检测方法。首先,建立灵武长枣... 针对加载预训练模型的传统SSD(Single Shot MultiBox Detector)模型不能更改网络结构,设备内存资源有限时便无法使用的问题,该研究提出一种不使用预训练模型也能达到较高检测精度的灵武长枣图像轻量化目标检测方法。首先,建立灵武长枣目标检测数据集。其次,以提出的改进DenseNet网络为主干网络,并将Inception模块替换SSD模型中的前3个额外层,同时结合多级融合结构,得到改进SSD模型。然后,通过对比试验证明改进DenseNet网络和改进SSD模型的有效性。在灵武长枣数据集上的试验结果表明,不加载预训练模型的情况下,改进SSD模型的平均准确率(mAP,mean Average Precision)为96.60%,检测速度为28.05帧/s,参数量为1.99×10^(6),比SSD模型和SSD模型(预训练)的mAP分别高出2.02个百分点和0.05个百分点,网络结构参数量比SSD模型少11.14×10^(6),满足轻量化网络的要求。即使在不加载预训练模型的情况下,改进SSD模型也能够很好地完成灵武长枣图像的目标检测任务,研究结果也可为其他无法加载预训练模型的目标检测任务提供新方法和新思路。 展开更多
关键词 图像处理 目标检测 灵武长枣 预训练模型 ssd模型 DenseNet网络 Inception模块
在线阅读 下载PDF
基于改进单次多目标检测器的果面缺陷冬枣实时检测 被引量:5
10
作者 李颀 陈哲豪 《江苏农业学报》 CSCD 北大核心 2022年第1期119-128,共10页
为实现果面缺陷冬枣实时检测,并解决缺陷的尺寸与位置不同影响检测精度的问题,提出一种基于改进单次多目标检测器(Single shot multibox detector,SSD)的果面缺陷冬枣实时检测方法。以陕西大荔冬枣中的虫蛀、轮纹和木质化3种缺陷果和正... 为实现果面缺陷冬枣实时检测,并解决缺陷的尺寸与位置不同影响检测精度的问题,提出一种基于改进单次多目标检测器(Single shot multibox detector,SSD)的果面缺陷冬枣实时检测方法。以陕西大荔冬枣中的虫蛀、轮纹和木质化3种缺陷果和正常果为研究对象,在数据采集设备下采集实际分拣图像,然后通过数据增强由400张扩充至2000张。改进SSD,建立MobileNetV3-SSD模型,为实时检测奠定基础;引入改进感受野块(RFB)可实现模型多尺寸提取冬枣缺陷特征的能力;用空间注意力模块(SAM)代替挤压和激励通道注意力模块(SE)增强模型定位冬枣缺陷特征的能力。试验结果表明,本研究模型在果面缺陷冬枣数据集上的表现均优于目前先进目标检测网络模型(RetinaNet和EfficientDet-D0),该模型对4类冬枣的整体检测精准性(mAP)达到91.89%,检测速度达到1 s 40.85帧。因此本研究模型较好地平衡了实时性和精准性,可应用于果面缺陷冬枣分拣流水线。 展开更多
关键词 冬枣 果面缺陷 实时检测 单次多目标检测 多尺寸 空间注意力模型
在线阅读 下载PDF
基于R-D SSD模型航空发动机安装工位检测算法 被引量:1
11
作者 陈科山 郝宇 +1 位作者 何泓波 李坤龙 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第4期682-689,共8页
为解决航空发动机在安装过程中大多实行人工安装、定位不精确等问题,在研究其自动化安装方法中,针对航空发动机安装工位的检测需求,提出了一种残差网络与膨胀卷积相融合的SSD改进算法(R-D SSD)。将经典SSD模型的主干网络VGG16替换为残... 为解决航空发动机在安装过程中大多实行人工安装、定位不精确等问题,在研究其自动化安装方法中,针对航空发动机安装工位的检测需求,提出了一种残差网络与膨胀卷积相融合的SSD改进算法(R-D SSD)。将经典SSD模型的主干网络VGG16替换为残差网络ResNet-101,并增加其输出特征图上的预选框数量,解决了原始算法对底层特征抓取能力不足的问题,进而弥补了对小目标检测效果较差的缺陷;利用膨胀卷积扩大网络的感受野,获取足够的安装工位边缘特征细节信息,在不改变网络结构的同时,保证了模型良好的实时性和对目标的检测精度。实验表明:对于小目标数据集和整个数据集,R-D SSD算法的平均检测精度较原始算法分别提高了8.6%和4.0%,可以满足航空发动机安装时平均检测精度不低于85%的要求。 展开更多
关键词 安装工位 残差网络 膨胀卷积 ssd模型 目标检测 预选数量
在线阅读 下载PDF
多尺度卷积特征融合的SSD目标检测算法 被引量:56
12
作者 陈幻杰 王琦琦 +4 位作者 杨国威 韩佳林 尹成娟 陈隽 王以忠 《计算机科学与探索》 CSCD 北大核心 2019年第6期1049-1061,共13页
提出了一种改进的多尺度卷积特征目标检测方法,用以提高SSD(single shot multibox detector)模型对中目标和小目标的检测精确度。该方法先对SSD模型低层特征层采用区域放大提取的方法以提高对小目标的检测能力,再对高层特征层进行特征... 提出了一种改进的多尺度卷积特征目标检测方法,用以提高SSD(single shot multibox detector)模型对中目标和小目标的检测精确度。该方法先对SSD模型低层特征层采用区域放大提取的方法以提高对小目标的检测能力,再对高层特征层进行特征提取以改善中目标的检测效果。最后,利用SSD模型中原有的多尺度卷积检测方法,将改进的多层特征检测结果进行融合,并通过参数再训练以获得最终改进的SSD模型。实验结果表明,该方法在MS COCO数据集上对中目标和小目标的测试精确度分别为75.1%和40.5%,相比于原有SSD模型分别提升16.3%和23.1%。 展开更多
关键词 单次多目标检测器(ssd)模型 多尺度特征融合 目标检测 深度学习
在线阅读 下载PDF
基于SSD和MobileNet网络的目标检测方法的研究 被引量:27
13
作者 任宇杰 杨剑 +1 位作者 刘方涛 张启尧 《计算机科学与探索》 CSCD 北大核心 2019年第11期1881-1893,共13页
为了提高计算机视觉中目标检测的一种基本模型SSD在多任务场景中的准确率和效率,基于深度学习的相关理论研究,结合一种轻量级的深层神经网络MobileNet的基本思想,构建了一种结合特征金字塔的多尺度卷积神经网络结构。利用Tensorflow平... 为了提高计算机视觉中目标检测的一种基本模型SSD在多任务场景中的准确率和效率,基于深度学习的相关理论研究,结合一种轻量级的深层神经网络MobileNet的基本思想,构建了一种结合特征金字塔的多尺度卷积神经网络结构。利用Tensorflow平台完成了以下一些工作:第一,对低层卷积层的特征图进行区域放大,保留更多的目标特征信息,再对高特征层进行特征提取;第二,在对重叠目标候选区域进行过滤的时候,基于非极大值抑制的方法和思想设置阈值消除冗余的目标候选区域,使得产生的负样本的数目减少,使模型效果逐步趋于稳定;第三,针对目标检测中的预测区域与真实区域在匹配过程中所产生的正负样本进行处理,用于保证模型的稳定性等。基于以上方法研究,使得模型对多目标识别的速度有所加快,鲁棒性更好,准确率更高,同时也适当降低了对硬件配置资源的需求。 展开更多
关键词 多尺度卷积特征 ssd模型 MobileNet 图像目标检测
在线阅读 下载PDF
一种改进的SSD算法及其在车辆目标检测中的应用 被引量:5
14
作者 韩雁鹏 侯进 +1 位作者 谭光鸿 罗朔 《计算机应用与软件》 北大核心 2021年第11期191-196,231,共7页
针对目前主流的目标检测算法检测效率不高以及小目标检测困难的问题,提出一种改进的SSD(Single Shot MultiBox Detector)算法,并将其应用于道路环境车辆目标的检测。设计一个目标检测网络结构,对高层特征图不进行降采样,使用空洞卷积和... 针对目前主流的目标检测算法检测效率不高以及小目标检测困难的问题,提出一种改进的SSD(Single Shot MultiBox Detector)算法,并将其应用于道路环境车辆目标的检测。设计一个目标检测网络结构,对高层特征图不进行降采样,使用空洞卷积和深度可分离卷积层来提高模型性能,并使用K-means算法来对模型参数进行优化。在Udacity道路环境数据集上进行对比实验,结果表明,该算法对车辆目标检测的平均精准度达到了58.01%,检测速度达到了86.26帧每秒,相比原SSD算法有明显提升。 展开更多
关键词 目标检测 ssd模型 深度可分离卷积 空洞卷积 K-MEANS算法
在线阅读 下载PDF
面向SAR图像任意方向舰船检测的改进YOLOv5
15
作者 曲春辉 王玮 +2 位作者 张婷 王英华 陈渤 《西安电子科技大学学报》 北大核心 2025年第4期1-14,共14页
合成孔径雷达(SAR)图像舰船检测方法面临舰船多尺度、任意方向、密集排列等难题,旋转框检测方法能实现任意方向舰船的精确检测,但是现有旋转框检测方法难以兼顾高精度与实时性。为解决上述问题,提出了一个结合中点偏移量表示法和YOLOv5... 合成孔径雷达(SAR)图像舰船检测方法面临舰船多尺度、任意方向、密集排列等难题,旋转框检测方法能实现任意方向舰船的精确检测,但是现有旋转框检测方法难以兼顾高精度与实时性。为解决上述问题,提出了一个结合中点偏移量表示法和YOLOv5的旋转框检测网络模型,直接继承水平框的回归机制,并设计适应于旋转检测的多任务联合网络损失函数,解决了常用旋转框检测表示方法引入角度参数而产生的网络难以训练和网络预测层参数冗余的问题。此外,还提出了基于注意力机制的主干网络,结合图像全局和邻域信息,增强了感兴趣区域的重要性和模型的特征提取能力,提高了轻量化旋转框检测网络的性能。最后,在RSDD-SAR数据集上进行实验,实现了SAR图像任意方向舰船目标检测,并获得舰船相应的角度信息,相比当前其他旋转框检测方法,取得了较好的检测效果,平均精度为90.02%。尤其在复杂近岸场景下所提方法达到了最优的舰船目标检测性能,平均精度为70.5%,并且模型的参数量最少,仅为7.2 M。其他相关实验也进一步验证了所提方法的有效性。 展开更多
关键词 合成孔径雷达 舰船 目标检测 旋转 YOLOv5模型
在线阅读 下载PDF
基于残差单发多框检测器模型的交通标志检测与识别 被引量:9
16
作者 张淑芳 朱彤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第5期940-949,共10页
针对现有目标检测方法仅适用于大尺寸、少量特定种类交通标志的检测,且对复杂交通场景图像检测效果不佳的问题,以抗退化性能较强的ResNet101为基础网络,增加若干卷积层构建残差单发多框检测器(SSD)模型,对高分辨率的交通图像进行多尺度... 针对现有目标检测方法仅适用于大尺寸、少量特定种类交通标志的检测,且对复杂交通场景图像检测效果不佳的问题,以抗退化性能较强的ResNet101为基础网络,增加若干卷积层构建残差单发多框检测器(SSD)模型,对高分辨率的交通图像进行多尺度分块检测。为了加快检测速度,采取由粗到精的策略,省略对纯背景图像块的预测.利用中等尺度图像块的初检结果缩小目标范围;对目标范围内的其他图像块进行检测;将所有图像块结果映射回原图像,并结合非极大值抑制实现精准识别。实验结果表明,该模型在公开的交通标志数据集Tsinghua-Tencent 100K上取得了94%的总体准确率和95%的总体召回率,对多分辨率图像中不同大小和形态的交通标志都具有良好的检测能力,鲁棒性较强。 展开更多
关键词 交通标志 残差单发多检测器(ssd)模型 多尺度分块 检测 由粗到精
在线阅读 下载PDF
基于SSD的小目标特征强化检测算法 被引量:2
17
作者 李炳臻 姜文志 +1 位作者 顾佼佼 刘克 《兵工自动化》 2021年第2期32-37,41,共7页
为解决原始单次多框目标检测(single shot multibox detector,SSD)目标检测算法中对小目标物体检测能力不足的问题,提出一种改进的SSD目标检测算法。采用VGG19作为特征提取网络,在低层特征图部分引入Conv3_3卷积特征图,对Conv4_4进行转... 为解决原始单次多框目标检测(single shot multibox detector,SSD)目标检测算法中对小目标物体检测能力不足的问题,提出一种改进的SSD目标检测算法。采用VGG19作为特征提取网络,在低层特征图部分引入Conv3_3卷积特征图,对Conv4_4进行转置卷积操作,将转置卷积后得到的Conv4_3同Conv3_3的特征图进行特征拼接,实验部分使用VOC数据集对模型进行训练与测试。结果表明:该算法可提高检测能力,目标检测精度能比原始SSD算法提高3.6%,小目标检测效果比改进前也有明显提升。 展开更多
关键词 深度学习 目标检测 卷积神经网络 单次多目标检测(ssd)模型
在线阅读 下载PDF
基于改进SSD的柑橘实时分类检测 被引量:44
18
作者 李善军 胡定一 +3 位作者 高淑敏 林家豪 安小松 朱明 《农业工程学报》 EI CAS CSCD 北大核心 2019年第24期307-313,共7页
针对人工分拣柑橘过程中,检测表面缺陷费时费力的问题,该文提出了一种基于改进SSD深度学习模型的柑橘实时分类检测方法。在经改装的自制打蜡机试验台架下采集单幅图像含有多类多个柑橘的样本2 500张,随机选取其中2 000张为训练集,500张... 针对人工分拣柑橘过程中,检测表面缺陷费时费力的问题,该文提出了一种基于改进SSD深度学习模型的柑橘实时分类检测方法。在经改装的自制打蜡机试验台架下采集单幅图像含有多类多个柑橘的样本2 500张,随机选取其中2 000张为训练集,500张为测试集,在数据集中共有正常柑橘19 507个,表皮病变柑橘9 097个,机械损伤柑橘4 327个。该方法通过单阶段检测模型SSD-ResNet18对图片进行计算和预测,并返回图中柑橘的位置与类别,以此实现柑橘的分类检测。以平均精度AP(average precision)的均值m AP(mean average precision)作为精度指标,平均检测时间作为速度指标,在使用不同特征图、不同分辨率和ResNet18、MobileNetV3、ESPNetV2、VoVNet39等4种不同特征提取网络时,进行模型分类检测效果对比试验研究。研究表明,该模型使用C4、C5特征图,768×768像素的分辨率较为合适,特征提取网络ResNet18在检测速度上存在明显优势,最终该模型的m AP达到87.89%,比原SSD的87.55%高出0.34个百分点,平均检测时间为20.27 ms,相较于原SSD的108.83 ms,检测耗时降低了436.90%。该模型可以同时对多类多个柑橘进行实时分类检测,可为自动化生产线上分拣表面缺陷柑橘的识别方面提供技术借鉴。 展开更多
关键词 目标识别 模型 无损检测 柑橘 表面缺陷 深度学习 ssd ResNet18
在线阅读 下载PDF
基于深度学习的肺炎图像目标检测 被引量:6
19
作者 何迪 刘立新 +3 位作者 刘玉杰 熊丰 齐美捷 张周锋 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期443-451,共9页
肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑... 肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑的机制准确高效地解释医学图像数据,在肺炎图像检测方面获得了广泛应用。构建了3种基于深度学习的图像目标检测模型,单发多框探测器(SSD)、faster-RCNN和faster-RCNN优化模型,对来自Kaggle数据集的26 684张带标签的肺部X光图像进行研究。原始X光图像经预处理后输入3种深度学习模型,分别对单处和两处病灶区域进行目标检测。随机选取500张测试图像,利用损失函数、分类准确率、回归精度和误检病灶数等指标对各模型的性能进行评估。结果表明,faster-RCNN的性能指标优于SSD;Faster-RCNN优化模型的性能指标均优于其他两种模型,其损失函数值小且可快速达到稳定,平均分类准确率为93.7%,平均回归精度为79.8%,且误检病灶数为0。该方法有助于肺炎的准确识别和诊断。 展开更多
关键词 目标检测 肺炎图像 深度学习 更快速区域卷积神经网络(faster-RCNN)模型 单发多探测器(ssd)模型
在线阅读 下载PDF
基于改进YOLO v3模型的多类交通标识检测 被引量:6
20
作者 张志佳 范莹莹 +1 位作者 邵一鸣 赵永茂 《沈阳工业大学学报》 CAS 北大核心 2023年第1期66-70,共5页
为了提高城市真实交通场景中的交通标志、交通信号灯及停止线检测精度,提出一种基于YOLO v3的多类交通标识检测模型——T-YOLO.该模型在YOLO v3目标检测模型的基础上,采用了四种尺度特征进行检测,设计了更贴合待测交通标识的先验框,提... 为了提高城市真实交通场景中的交通标志、交通信号灯及停止线检测精度,提出一种基于YOLO v3的多类交通标识检测模型——T-YOLO.该模型在YOLO v3目标检测模型的基础上,采用了四种尺度特征进行检测,设计了更贴合待测交通标识的先验框,提升了模型对多类交通标识等小目标检测性能.采集13000张城市交通场景图像并进行标注,制作成多类交通标志数据集.实验结果表明,该模型在TT100K交通标志数据集、在LaRA交通信号灯数据集均取得较好结果.同时,在自制SUTDB数据集上交通标志、交通信号灯、停止线检测精度分别为0.90、0.99、0.80.文中提出的T-YOLO模型检测实现了多类交通标识,并且检测精度高,具有一定工程实用价值. 展开更多
关键词 交通标识 YOLO v3模型 多尺度 先验 特征融合 目标检测 深度学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部