Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application ...Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors.展开更多
为研究宇宙辐射环境中航天器里的模拟互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)集成电路性能和各种效应,并在辐射效应所产生机制的基础上,从设计和工艺方面提出了模拟CMOS集成电路主要抗辐射加固设计方法。...为研究宇宙辐射环境中航天器里的模拟互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)集成电路性能和各种效应,并在辐射效应所产生机制的基础上,从设计和工艺方面提出了模拟CMOS集成电路主要抗辐射加固设计方法。在宇宙环境中,卫星中的模拟CMOS集成电路存在CMOS半导体元器件阈值电压偏离、线性跨导减小、衬底的漏电流增加和转角1/f噪声幅值增加。所以提出了3种对模拟CMOS集成电路进行抗辐射加固的方法:1)抗辐射模拟CMOS集成电路的设计;2)抗辐射集成电路版图设计;3)单晶半导体硅膜(Silicon on Insulator,SOI)抗辐射工艺与加固设计。根据上面的设计方法研制了抗辐射加固模拟CMOS集成电路,可以取得较好的抗辐射效果。展开更多
基金Supported by the National Key Research and Development Program of China(2021YFB2012601)National Natural Science Foundation of China(12204109)+1 种基金Science and Technology Innovation Plan of Shanghai Science and Technology Commission(21JC1400200)Higher Education Indus⁃try Support Program of Gansu Province(2022CYZC-06)。
文摘Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors.
文摘为研究宇宙辐射环境中航天器里的模拟互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)集成电路性能和各种效应,并在辐射效应所产生机制的基础上,从设计和工艺方面提出了模拟CMOS集成电路主要抗辐射加固设计方法。在宇宙环境中,卫星中的模拟CMOS集成电路存在CMOS半导体元器件阈值电压偏离、线性跨导减小、衬底的漏电流增加和转角1/f噪声幅值增加。所以提出了3种对模拟CMOS集成电路进行抗辐射加固的方法:1)抗辐射模拟CMOS集成电路的设计;2)抗辐射集成电路版图设计;3)单晶半导体硅膜(Silicon on Insulator,SOI)抗辐射工艺与加固设计。根据上面的设计方法研制了抗辐射加固模拟CMOS集成电路,可以取得较好的抗辐射效果。