期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ARMv8架构的面向机器翻译的单精度浮点通用矩阵乘法优化 被引量:10
1
作者 龚鸣清 叶煌 +2 位作者 张鉴 卢兴敬 陈伟 《计算机应用》 CSCD 北大核心 2019年第6期1557-1562,共6页
针对使用ARM处理器的移动智能设备执行神经网络推理计算效率不高的问题,提出了一套基于ARMv8架构的单精度浮点通用矩阵乘法(SGEMM)算法优化方案。首先,确定ARMv8架构的处理器执行SGEMM算法的计算效率受限于向量化计算单元使用方案、指... 针对使用ARM处理器的移动智能设备执行神经网络推理计算效率不高的问题,提出了一套基于ARMv8架构的单精度浮点通用矩阵乘法(SGEMM)算法优化方案。首先,确定ARMv8架构的处理器执行SGEMM算法的计算效率受限于向量化计算单元使用方案、指令流水线和缓存未命中的发生概率;其次,针对三点导致计算效率受限的原因实现向量指令内联汇编、数据重排和数据预取三条优化技术;最后,根据语音方向的神经网络中常见的三种矩阵模式设计测试实验,实验中使用RK3399硬件平台运行程序。实验结果表示:方阵模式下单核计算速度为10.23 GFLOPS,达到实测浮点峰值的78.2%;在细长矩阵模式下单核计算速度为6.35 GFLOPS,达到实测浮点峰值的48.1%;在连续小矩阵模式下单核计算速度为2.53 GFLOPS,达到实测浮点峰值19.2%。将优化后的SGEMM算法部署到语音识别神经网络程序中,程序的实际语音识别速度取得了显著提高。 展开更多
关键词 ARMv8 单指令多数据流计算 基础线性代数子程序库 高性能计算
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部