期刊文献+
共找到410篇文章
< 1 2 21 >
每页显示 20 50 100
基于MA-CNN-LSTM和自注意力机制的单变量短期电力负荷预测 被引量:6
1
作者 周磊 竺筱晶 《科学技术与工程》 北大核心 2024年第22期9408-9416,共9页
精准的短期电力负荷预测对保证电网安全稳定运行、能量优化管理、提高发电设备利用率和降低运行成本等具有重要作用。针对单变量场景下地区短期电力负荷预测问题,提出了一种基于多重滑动平均(moving average,MA)和卷积网络-长短期记忆网... 精准的短期电力负荷预测对保证电网安全稳定运行、能量优化管理、提高发电设备利用率和降低运行成本等具有重要作用。针对单变量场景下地区短期电力负荷预测问题,提出了一种基于多重滑动平均(moving average,MA)和卷积网络-长短期记忆网络(convolutional networks long short-term memory networks,CNN-LSTM)混合模型,并添加自注意力(Self-Attention)机制的预测方法。首先利用多重滑动平均将原始负荷数据分解为多个平稳序列,以降低数据的噪声和复杂度。接着将各一维序列数据变换为多维结构,使用CNN提取多个时间点之间的内在关系。再输入LSTM模型中训练,并使用自注意力机制进行加权融合以提高预测精度。最后把各序列预测值相加得到最终负荷预测值。为了验证该方法的有效性,在中国某地区电网间隔15 min的真实负荷数据上进行了预测实验,并将预测结果与其他常见的模型预测结果进行对比。通过实验结果表明,在单变量短期电力负荷预测问题中该方法的准确性比其他方法更高。 展开更多
关键词 单变量短期电力负荷预测 滑动平均 卷积网络 短期记忆网络 自注意力
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
2
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
在线阅读 下载PDF
基于全连接时空图的短期电力负荷预测方法
3
作者 徐智远 缪卓窈 +3 位作者 龙卓 吴公平 邓丰 邓乐 《电力科学与技术学报》 北大核心 2025年第3期123-132,共10页
短期负荷预测是电力系统中的一项重要任务。目前,对多序列负荷之间的时空邻接关系的研究较少,而一定情况下考虑这种时空邻接性可以提高预测的准确性。为此,提出一种基于全连接图的图卷积神经网络(fully-connected graph based graph con... 短期负荷预测是电力系统中的一项重要任务。目前,对多序列负荷之间的时空邻接关系的研究较少,而一定情况下考虑这种时空邻接性可以提高预测的准确性。为此,提出一种基于全连接图的图卷积神经网络(fully-connected graph based graph convolution neural network,FCGCN)。首先,FCGCN将多序列负荷数据编码成图的节点特征矩阵,结合位置编码的方法增加负荷数据的顺序信息,并利用动态时间规整(dynamic time warping,DTW)算法构建图的邻接矩阵,从而形成负荷数据的全连接时空图;然后,结合滑动窗口算法思想,将构建的全连接图连续分割为一系列子图,再利用图卷积神经网络(graph convolution neural network,GCN)对每个子图单独进行特征提取;其次,为了实现对多源负荷数据的多角度特征提取,FCGCN采用多分支并行结构,将每个分支提取的特征向量串联,并通过全连接层完成对不同负荷的预测;最后,利用来自某生产基地的实际负荷数据进行验证实验。结果表明:与常见的预测模型相比,FCGCN能取得更高的预测精度。 展开更多
关键词 电力系统 多源负荷数据 短期负荷预测 全连接时空图 图卷积神经网络
在线阅读 下载PDF
基于重构分解和误差补偿的短期电力负荷双层协同预测
4
作者 李阳 徐燕龙 +3 位作者 王沼民 叶永盛 黎丽丽 黄江华 《电网与清洁能源》 北大核心 2025年第2期75-83,共9页
为有效提高短期电力负荷预测精度,提出了一种基于重构分解和误差补偿的双层协同预测方法。上层以改进的完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)、排列熵、K-medo... 为有效提高短期电力负荷预测精度,提出了一种基于重构分解和误差补偿的双层协同预测方法。上层以改进的完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)、排列熵、K-medoids聚类和自适应变分模态分解组成的重构分解方法降低负荷序列的不可预测性,进一步构建时间卷积网络联立双向门控循环单元的混合预测模型(temporalconvolutional network-bidirectional gated recurrent unit,TCBG);下层以上层负荷预测误差以及历史误差为输入,建立ICEEMDAN-TCBG误差补偿模型,修正上层预测结果。以爱尔兰地区2019年电力负荷为算例搭建多组分析实验,实验结果表明:所提方法的MAE和MAPE分别为298.079 MW和1.242%,优于其他对比方法。 展开更多
关键词 短期电力负荷 重构分解 误差补偿 双层协同预测
在线阅读 下载PDF
基于可解释动态图注意力网络的短期电力负荷预测
5
作者 原野 王海燕 +2 位作者 袁新平 李梦宇 何杰 《计算机应用》 北大核心 2025年第S1期329-333,共5页
短期电力负荷预测对于电力系统中的负荷调度至关重要,然而现有方法在捕捉负荷中心的动态时空关系方面存在不足。因此,提出一种基于动态图注意力网络(Dyn-GAT)和时间卷积网络(TCN)的Dyn-GAT-TCN(Dynamic Graph ATtention Temporal Convol... 短期电力负荷预测对于电力系统中的负荷调度至关重要,然而现有方法在捕捉负荷中心的动态时空关系方面存在不足。因此,提出一种基于动态图注意力网络(Dyn-GAT)和时间卷积网络(TCN)的Dyn-GAT-TCN(Dynamic Graph ATtention Temporal Convolutional Network)模型。首先,结合负荷空间依赖关系构建负荷时空网络图,并利用时间滑动窗口生成负荷动态图序列;然后,基于Dyn-GAT自适应地调整注意力权重,从而动态建模负荷中心间的空间依赖性;最后,基于TCN提取时间序列中的长短期依赖信息,以实现更精准的负荷预测。在纽约独立系统运营商(NYISO)的一个公开数据集上的实验结果表明,所提模型在一天时间尺度内的均方根误差(RMSE)为2.40,平均绝对百分比误差(MAPE)为1.46%。在云南电网公司的一个数据集上的验证结果表明,所提模型优于已有的相关方法。此外,所提模型的注意力机制增强了可解释性,并能识别对负荷预测影响最大的关键节点。可见,Dyn-GAT-TCN模型在建模和分析电力负荷的动态时空关系方面具有显著优势,为电力系统的调度优化提供了准确且可解释的预测支持。 展开更多
关键词 短期电力负荷预测 动态图注意力网络 时间卷积网络 时空关系建模 可解释性分析
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
6
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测
7
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于CNN-SAEDN-Res的短期电力负荷预测方法 被引量:10
8
作者 崔杨 朱晗 +2 位作者 王议坚 张璐 李扬 《电力自动化设备》 EI CSCD 北大核心 2024年第4期164-170,共7页
基于深度学习的序列模型难以处理混有非时序因素的负荷数据,这导致预测精度不足。提出一种基于卷积神经网络(CNN)、自注意力编码解码网络(SAEDN)和残差优化(Res)的短期电力负荷预测方法。特征提取模块由二维卷积神经网络组成,用于挖掘... 基于深度学习的序列模型难以处理混有非时序因素的负荷数据,这导致预测精度不足。提出一种基于卷积神经网络(CNN)、自注意力编码解码网络(SAEDN)和残差优化(Res)的短期电力负荷预测方法。特征提取模块由二维卷积神经网络组成,用于挖掘数据间的局部相关性,获取高维特征。初始负荷预测模块由自注意力编码解码网络和前馈神经网络构成,利用自注意力机制对高维特征进行自注意力编码,获取数据间的全局相关性,从而模型能根据数据间的耦合关系保留混有非时序因素数据中的重要信息,通过解码模块进行自注意力解码,并利用前馈神经网络回归初始负荷。引入残差机制构建负荷优化模块,生成负荷残差,优化初始负荷。算例结果表明,所提方法在预测精度和预测稳定性方面具有优势。 展开更多
关键词 短期电力负荷预测 卷积神经网络 自注意力机制 残差机制 负荷优化
在线阅读 下载PDF
一种时频尺度下的多元短期电力负荷组合预测方法 被引量:7
9
作者 李楠 姜涛 +1 位作者 隋想 胡禹先 《电力系统保护与控制》 EI CSCD 北大核心 2024年第13期47-58,共12页
随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mo... 随机因素的增加导致电力负荷数据成分日渐复杂,使短期负荷预测的难度逐渐增大。针对该问题,提出一种时频尺度下的时间卷积网络与多元线性回归相融合的组合预测模型。利用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)在时频域上将负荷数据分解为若干个频率特征不同的本征模态分量,在模糊熵准则下聚类为随机项和趋势项。采用皮尔逊系数从诸多影响因素中筛选出与电力负荷高度相关的特征,鉴于小时间尺度分析更易于挖掘局部细节特征,分别构建了随机项与趋势项的细颗粒度特征集。利用具有强非线性处理能力的时间卷积网络(temporal convolutional network,TCN)去预测随机项,利用结构简单及线性拟合效果好的多元线性回归(multiplelinearregression,MLR)去预测趋势项,将二者的预测结果进行叠加重构后获得最终预测值。在新加坡和比利时两组数据集上的实验结果证明:所提模型具有较高的预测精度、较好的泛化性能及鲁棒性。 展开更多
关键词 短期电力负荷预测 时频尺度 分解算法 模糊熵 模型融合
在线阅读 下载PDF
基于多维气象信息时空融合和MPA-VMD的短期电力负荷组合预测模型 被引量:6
10
作者 王凌云 周翔 +2 位作者 田恬 杨波 李世春 《电力自动化设备》 EI CSCD 北大核心 2024年第2期190-197,共8页
为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分... 为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分析并实现时空融合。在时间维度上,采用海洋捕食者算法(MPA)实现变分模态分解(VMD)核心参数的自动寻优,并采用加权排列熵构造MPA-VMD适应度函数,实现负荷序列的自适应分解。通过将时间维度各分量与空间维度各气象信息进行融合构造长短期记忆(LSTM)网络模型与海洋捕食者算法-最小二乘支持向量机(MPA-LSSVM)模型的输入集,得到各分量预测结果,根据评价指标选择各分量对应的预测模型,重构得到整体预测结果。算例分析结果表明,所提预测模型优于传统预测模型,有效提高了电力负荷预测精度。 展开更多
关键词 短期电力负荷预测 海洋捕食者算法 时空融合 COPULA理论 变分模态分解
在线阅读 下载PDF
基于极限学习机的短期电力负荷在线预测 被引量:2
11
作者 杨凌 彭文英 +2 位作者 杨思怡 杜娟 程丽 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期637-644,共8页
为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输... 为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输出权值的稀疏正则化项相结合,用l1-范数稀疏化网络隐藏层节点,用次梯度策略解决求解过程中代价函数无法处处可微的问题,以递归最小二乘的训练方法完成在线学习,根据估计误差自适应寻找最优正则化参数.仿真结果表明,基于SRLS-ELM的算法能有效简化网络结构,且与ELM、堆叠核ELM批量、在线序列ELM半在线以及精确在线支持向量机回归模型相比,对短期电力负荷在线预测时具有更高的预测精度和学习效率,且鲁棒性强. 展开更多
关键词 短期电力负荷预测 极限学习机 在线学习 正则化
在线阅读 下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:11
12
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环 注意力机制 短期电力负荷预测 混合预测模型
在线阅读 下载PDF
基于生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测 被引量:4
13
作者 曾进辉 苏旨音 +2 位作者 肖锋 刘颉 孙贤水 《电子测量技术》 北大核心 2024年第20期92-100,共9页
针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题。本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法。首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量。随后,将所有分量输入LSTM... 针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题。本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法。首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量。随后,将所有分量输入LSTM中。为进一步提升负荷预测精度和优化模型泛化能力,分别对大分量信号引入改进麻雀搜寻算法优化LSTM超参数和对原始负荷数据引入表格生成对抗网络生成新数据样本,形成基于表格生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测方法。最后,分别采用第九届电工数学建模竞赛负荷数据和湖南省某地市含分布式电源的负荷数据进行效果验证。结果表明,在两种数据集下,该模型的平均绝对百分比误差分别为2.37%和2.76%,验证了该方法的有效性。 展开更多
关键词 短期电力负荷预测 经验模态分解 短期记忆神经网络 改进麻雀搜寻算法 生成对抗网络
在线阅读 下载PDF
基于变量选择与Transformer模型的中长期电力负荷预测方法 被引量:10
14
作者 黄文琦 梁凌宇 +3 位作者 王鑫 赵翔宇 宗珂 孙凌云 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第4期483-491,500,共10页
准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件... 准确且有效的负荷预测对于电力系统的实时运行和调度非常重要。提出了一种融合变量选择与稀疏Transformer模型的预测方法,将静态变量和时序变量作为输入,充分发挥静态变量在全局时间范围内的信息增强作用,基于门控机制设计变量分权组件,根据变量与预测结果的相关性,赋予变量不同的权重。设计了双层编码结构,进行时序特征提取,对注意力进行稀疏处理,通过多变量输入对未来时刻负荷进行预测。基于真实电力负荷数据的实验表明,本文模型能够提高中长期负荷预测精度和效率。 展开更多
关键词 电力时序数据 TRANSFORMER 中长期负荷预测 变量 变量选择
在线阅读 下载PDF
基于N-BEATS与辅助编码器的短期电力负荷预测 被引量:5
15
作者 范茜茜 王国强 +1 位作者 罗贺 台建玮 《电网技术》 EI CSCD 北大核心 2024年第4期1612-1621,共10页
短期电力负荷预测的准确性对智能电网平稳高效运行具有重要意义,但多种因素影响下的负荷数据具有较强的非平稳性与随机波动性,使得高精度的短期电力负荷预测面临挑战。为充分挖掘负荷序列中的趋势特征与周期性特征,准确提取与电力负荷... 短期电力负荷预测的准确性对智能电网平稳高效运行具有重要意义,但多种因素影响下的负荷数据具有较强的非平稳性与随机波动性,使得高精度的短期电力负荷预测面临挑战。为充分挖掘负荷序列中的趋势特征与周期性特征,准确提取与电力负荷存在潜在相关性的辅助信息特征,提升短期电力负荷预测精度,该文提出了一种基于神经基扩展分析(neural basis expansion analysis,N-BEATS)与辅助编码器的短期电力负荷预测模型。该模型包含两个并行的编码器,基于神经基扩展分析(neural basis expansion analysis,N-BEATS)模型的负荷特征编码器和基于多头注意力机制的辅助信息编码器,分别用于学习负荷数据中的时序特征与辅助信息特征。同时,构建特征融合模块将时序特征和辅助信息特征构造成联合特征向量,并设计基于门控循环单元(gated recurrent unit,GRU)的预测解码器模块进行短期电力负荷预测。在GEFCom2014公开数据集上进行实验,结果表明所提方法与长短期记忆(long short-termmemory,LSTM)网络模型、卷积神经网络(convolutional neural network,CNN)-LSTM网络模型、序列到序列(sequence-to-sequence,Seq2Seq)网络模型、季节自回归差分移动平均(seasonal autoregressive integrated moving average,SARIMA)模型及支持向量回归模型(support vector returns,SVR)等基线模型相比,在预测精度方面具有明显优势,平均绝对百分比误差(mean absolute percentage error,MAPE)平均提升了24.16%。 展开更多
关键词 短期电力负荷预测 神经基扩展分析 多头注意力机制 特征融合 深度学习
在线阅读 下载PDF
基于变分模态分解和复合变量选取的短期负荷预测 被引量:6
16
作者 周纲 黄瑞 +3 位作者 刘谋海 李文博 胡军华 高云鹏 《电测与仪表》 北大核心 2024年第2期122-129,共8页
精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,... 精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,提出复合变量选取算法分析筛选影响负荷波动的关键因素,有效去除预测干扰信息并进一步简化预测模型的复杂度,通过兼顾数据短期依赖和长期依赖的长短时记忆神经网络对各子序列进行预测,并将各子序列预测结果进行叠加实现最终的短期负荷预测,据此建立基于变分模态分解和复合变量选取的短期负荷预测方法。选取2019年整年长沙市实际数据验证结果表明,提出算法在复杂外部影响因素下,能准确筛选负荷预测的关键影响因素,相比传统预测模型,提出模型结构更简单、预测精度更高。 展开更多
关键词 短期负荷预测 变分模态分解 复合变量选取算法 长短时记忆神经网络
在线阅读 下载PDF
基于改进Autoformer模型的短期电力负荷预测 被引量:9
17
作者 范杏蕊 李元诚 《电力自动化设备》 EI CSCD 北大核心 2024年第4期171-177,共7页
针对短期电力负荷预测因受天气、温度、节假日等多重不确定性因素影响而造成精度低的问题,提出一种基于改进Autoformer模型的短期电力负荷预测模型。改变序列分解预处理的惯例,设计深度模型的内部分解模块,该模块提取模型中隐藏状态的... 针对短期电力负荷预测因受天气、温度、节假日等多重不确定性因素影响而造成精度低的问题,提出一种基于改进Autoformer模型的短期电力负荷预测模型。改变序列分解预处理的惯例,设计深度模型的内部分解模块,该模块提取模型中隐藏状态的内在复杂时序趋势,使得模型具有复杂时间序列的渐进分解能力;提出Nystrom自注意力机制,该机制利用Nystrom方法来逼近标准的自注意力机制。某地电力负荷预测实验结果表明,所提模型比基于标准Autoformer模型的短期电力负荷预测模型的时间复杂度更低,准确率更高。 展开更多
关键词 短期电力负荷预测 时序分解模块 Nystrom自注意力机制 Sdformer模型
在线阅读 下载PDF
基于CEEMDAN模态分解和TCN-BiGRU的短期电力负荷预测 被引量:7
18
作者 唐竹 肖宇航 +4 位作者 郭淳 梅秋怡 王森 郑宽昀 毛新颖 《智慧电力》 北大核心 2024年第12期59-64,72,共7页
为了深入分析复杂的短期电力负荷变化规律和其长期相关性,提出了一种基于自适应噪声完备集合经验模态分解(CEEMDAN)的时间卷积网络(TCN)与双向门控循环单元(BiGRU)的融合模型。采用CEEMDAN方法将完整的电力负荷数据分解成多个本征模态... 为了深入分析复杂的短期电力负荷变化规律和其长期相关性,提出了一种基于自适应噪声完备集合经验模态分解(CEEMDAN)的时间卷积网络(TCN)与双向门控循环单元(BiGRU)的融合模型。采用CEEMDAN方法将完整的电力负荷数据分解成多个本征模态函数序列和残差项序列,通过时间卷积网络模型的扩展卷积策略提取时间序列的特征;结合双向门控循环单元的非线性拟合能力进一步提取TCN训练输出的非线性特征。实验结果表明,在短期电力负荷预测中,所提模型预测的决定系数为96.6%、平均绝对百分比误差为3.82%、平均绝对误差为45.5,各项指标均优于对比模型。 展开更多
关键词 短期电力负荷预测 模态分解 时间卷积网络 双向门控循环
在线阅读 下载PDF
基于SF-Transformer的智能教育平台短期电力负荷预测研究 被引量:2
19
作者 冯艳丽 周宇 +2 位作者 黄福兴 万俊岭 袁培森 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期173-182,共10页
建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性... 建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性与电力负荷数据的相关性不强并且Transformer无法捕捉电力负荷数据的时间相关性,而导致电力负荷预测不够准确的问题,基于SR(Székely and Rizzo)距离相关系数、融合时间定位编码和Transformer,提出了一种短期电力负荷预测模型SF-Transformer.SF-Transformer通过SR距离相关系数对影响电力负荷数据的属性进行筛选,选择与电力负荷数据之间SR距离相关系数较大的属性.SF-Transformer采用一种全局时间编码与局部位置编码相结合的融合时间定位编码,有助于模型全面获取电力负荷数据的时间定位信息.在数据集上开展了实验,实验结果表明SF-Transformer与其他模型相比,在两种时长上进行电力负荷预测具有更低的均方根误差和平均绝对误差. 展开更多
关键词 智能教育平台 短期电力负荷预测 SR距离相关系数 融合时间定位编码 TRANSFORMER
在线阅读 下载PDF
基于PLESN和LESQRN概率预测模型的短期电力负荷预测 被引量:3
20
作者 樊江川 于昊正 +2 位作者 王冬生 安佳坤 杨丽君 《燕山大学学报》 北大核心 2024年第1期54-61,共8页
针对现有电力负荷预测不能很好反映负荷数据的周期性和趋势性以及残差的波动性特征提出一种考虑周期性建模的泄露积分型回声状态网络点预测模型和泄露积分型回声状态分位数回归网络概率预测模型组合的短期电力负荷预测方法.首先为了捕... 针对现有电力负荷预测不能很好反映负荷数据的周期性和趋势性以及残差的波动性特征提出一种考虑周期性建模的泄露积分型回声状态网络点预测模型和泄露积分型回声状态分位数回归网络概率预测模型组合的短期电力负荷预测方法.首先为了捕捉负荷的多重特征定义了周期性和趋势性损失函数辅助优化点预测模型然后为克服残差的波动问题利用概率预测模型对点预测值与真实值的残差进行建模预测最后整合同时刻的点预测值与残差预测区间得到概率预测模型结果.实际算例结果表明与其他模型相比所提模型不仅有效抑制尖端振荡现象而且能够生成可靠的概率密度分布. 展开更多
关键词 短期电力负荷预测 周期性建模 泄露积分型回声状态网络 分位数回归
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部