期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
单变量时间序列的MHAGRU-MCCE分类方法
1
作者 林泓 刘桂雄 +1 位作者 戈燕红 崔怀丰 《电子测量技术》 北大核心 2024年第16期83-91,共9页
在单变量时间序列分类任务中,有效利用时间序列的多尺度特征、时间依赖特征对提高分类准确率至关重要。针对现有模型在综合利用多尺度特征、时间依赖特征方面局限,本文提出一种结合多尺度条件卷积增强模块(MCCE)与基于多头注意力机制的... 在单变量时间序列分类任务中,有效利用时间序列的多尺度特征、时间依赖特征对提高分类准确率至关重要。针对现有模型在综合利用多尺度特征、时间依赖特征方面局限,本文提出一种结合多尺度条件卷积增强模块(MCCE)与基于多头注意力机制的门控循环单元(MHAGRU)新型混合模型MHAGRU-MCCE,MCCE从不同尺度捕捉丰富时序特征,MHAGRU侧重于提取时间序列数据中依赖关系。在UCR的85个公共数据集上,与MACNN、AFFNet、OS-CNN、LITETime、MLP和LSTM-FCN等6种主流基于深度学习时间序列分类模型相比,验证表明MHAGRU-MCCE在平均准确率(MA)上分别提升0.66%、2.04%、3.45%、2.70%、12%和2.89%,并取得最高算术平均排名(AMR)=2.45、几何平均排名(GMR)=1.98,充分证明MHAGRU-MCCE在处理单变量时间序列分类问题上的有效性、优越性。 展开更多
关键词 单变量时间序列分类 多尺度卷积 门控循环 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部