期刊文献+
共找到2,270篇文章
< 1 2 114 >
每页显示 20 50 100
基于单分类支持向量机的煤矿防爆电气设备振动故障自动检测 被引量:10
1
作者 郑铁华 王飞 +1 位作者 赵格兰 杜春晖 《工矿自动化》 北大核心 2025年第2期106-112,共7页
煤矿防爆电气设备在运行过程中产生的振动会损害其机械完整性,导致紧固件松动、零部件磨损,并改变设备的结构与振动模态,进而引发信号特征的复杂变化,使得正常振动频率与故障引发的新频率成分相互混淆,模糊了正常信号与故障信号之间的界... 煤矿防爆电气设备在运行过程中产生的振动会损害其机械完整性,导致紧固件松动、零部件磨损,并改变设备的结构与振动模态,进而引发信号特征的复杂变化,使得正常振动频率与故障引发的新频率成分相互混淆,模糊了正常信号与故障信号之间的界限,从而降低传统检测方法在故障检测中的准确性。针对上述问题,提出一种基于单分类支持向量机(OCSVM)的煤矿防爆电气设备振动故障自动检测方法。首先,构造设备的正常状态特征和振动故障状态特征,根据OCSVM的特性,将正常状态特征序列设定为OCSVM核函数的决策边界学习目标。考虑煤矿防爆电气设备振动故障信号呈现非线性和高维特征,选定多项式核作为OCSVM的核函数。然后,采用网格搜索和K−交叉验证相结合的方式对OCSVM进行参数调优,以使OCSVM达到更好的性能。最后,通过求取OCSVM目标函数的最优解,确定最优决策边界,以此实现煤矿防爆电气设备振动故障的自动检测。实验结果显示:①在迭代次数为20时,OCSVM算法算法可完成收敛,达到稳定。②基于OCSVM的电气设备信号划分实验中,借助多项式核函数能精准划分样本实现检测。③振动故障自动检测性能分析中,所提方法在各样本量下准确率均显著高于红外热成像技术检测方法、基于灰狼优化支持向量机模型检测方法,小样本量时准确率达98.25%且稳定性好。 展开更多
关键词 煤矿防爆电气设备 振动故障检测 分类支持向量 变分模态分解 熵矩阵
在线阅读 下载PDF
基于Transformer与单分类支持向量机的窃电时间识别方法
2
作者 陈静 王铭海 +5 位作者 刘煜寒 江灏 缪希仁 林蔚青 郑垂锭 赵睿 《电网技术》 北大核心 2025年第5期2109-2118,I0093,共11页
窃电量的追回是窃电检测的最终目的,准确的窃电时间识别是进行窃电量精确估算的重要依据。然而,现有窃电检测方法侧重于识别窃电行为,对窃电时间缺乏深入分析,亟需研究基于窃电用户自身计量数据的窃电时间识别模型,为窃电量的估算提供... 窃电量的追回是窃电检测的最终目的,准确的窃电时间识别是进行窃电量精确估算的重要依据。然而,现有窃电检测方法侧重于识别窃电行为,对窃电时间缺乏深入分析,亟需研究基于窃电用户自身计量数据的窃电时间识别模型,为窃电量的估算提供依据。针对窃电时间识别问题,提出一种基于Transformer与单分类支持向量机(one-class support vector machine,OCSVM)的半监督窃电数据分类方法。首先,对用户负荷数据按日进行切割,将窃电时间识别问题转化为窃电日负荷数据判别问题;然后,使用Transformer作为重构模型学习用户的正常用电模式与规律,以重构出基于用户日负荷数据的重构值;最后,将构造重构误差曲线作为OCSVM的输入,构造正常用电行为的决策边界,进而判别出窃电数据,以实现窃电时间识别。根据南方某省智能电表用户数据进行算例分析,验证了该方法的可行性和有效性,实验结果表明该方法具有较好的灵敏性和鲁棒性。 展开更多
关键词 窃电 窃电时间识别 半监督学习 Transformer模型 分类支持向量
在线阅读 下载PDF
火箭发动机故障检测的快速增量单分类支持向量机算法 被引量:4
3
作者 张万旋 张箭 +2 位作者 卢哲 薛薇 张楠 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期115-122,共8页
为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单... 为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单分类支持向量机模型进行改进,并应用于液体火箭发动机异常检测,使单分类支持向量机检测模型具备对不同台次、不同工况的自适应性,提高了模型的计算速度。对多台次热试车数据的分析结果表明,该模型十分有效,训练速度快,具备实用价值。 展开更多
关键词 分类支持向量 特征提取 自适应检测 增量学习 异常检测
在线阅读 下载PDF
基于遗传和引导聚集算法优化支持向量机的白酒基酒品质评估方法
4
作者 庞婷婷 张贵宇 +4 位作者 刘科材 李晓平 庹先国 彭英杰 曾祥林 《食品科学》 北大核心 2025年第6期275-284,共10页
基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support v... 基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support vector machine,SVM)分类器的方法,以解决单一SVM分类器在分类精度和泛化能力的不足。研究使用Spearman相关性筛选了36种关键物质,选择核主成分分析法提取了12个核主成分,并使累计贡献率达到96.06%,将其作为模型输入。选择性能最优的径向基核函数支持向量机,使用对数据多样性适应较强的并行计算Bagging集成算法,构建Bagging-SVM分类器进行基酒等级分类,最后,通过GA优化Bagging-SVM分类器的参数(C、γ、N),构建GA-Bagging-SVM模型。结果显示,GA-Bagging-SVM模型的准确率、精确度、召回率、F1-Score分别为96.77%、96.90%、96.77%、96.78%,优于Bagging-SVM和SVM模型,相比单一SVM模型提升了6.45%、5.61%、6.45%、6.42%,比Bagging-SVM模型提升了3.22%、2.29%、3.22%和3.15%。该方法可作为白酒基酒品质评估模型的优化方法。 展开更多
关键词 基酒 支持向量 引导聚集算法 遗传算法 分类预测
在线阅读 下载PDF
基于单分类支持向量机的潜油电泵工况及故障诊断 被引量:9
5
作者 刘广孚 杜玉龙 +3 位作者 郭亮 石二勇 王震 鄢志丹 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第5期162-168,共7页
利用单分类支持向量机(OCSVM)模型区分潜油电泵正常运行状态和异常运行状态,仅依托潜油电泵正常状态下的数据,通过OCSVM模型获得具备区分异常状态数据的能力。首先对潜油电泵电流数据进行预处理,筛选正常状态下的电流数据;然后根据潜油... 利用单分类支持向量机(OCSVM)模型区分潜油电泵正常运行状态和异常运行状态,仅依托潜油电泵正常状态下的数据,通过OCSVM模型获得具备区分异常状态数据的能力。首先对潜油电泵电流数据进行预处理,筛选正常状态下的电流数据;然后根据潜油电泵特性及数据特点,提取6项相关数据特征,利用单分类支持向量机模型识别包含未知故障在内的异常状态,从而实现潜油电泵工况及故障诊断;最后利用实际生产数据对模型进行验证。结果表明,所提方法识别准确度高,模型泛化能力强,通过对潜油电泵日常运行数据进行实时分析,能够实现潜油电泵运行状态的实时监测及异常工况的识别预警。 展开更多
关键词 潜油电泵 分类支持向量(ocsvm) 特征提取 工况及故障诊断
在线阅读 下载PDF
基于单类支持向量机的组合导航容错算法 被引量:3
6
作者 孙传波 王虹 +1 位作者 杨然 余国才 《电光与控制》 CSCD 北大核心 2024年第5期30-33,107,共5页
提出了一种基于单类支持向量机(OCSVM)的组合导航容错算法。针对组合导航系统中子系统出现故障会影响整个导航系统精度的问题,采用基于单类支持向量机的方法,对故障进行检测和隔离,并对容错性能进行分析。仿真结果表明:在应用基于单类... 提出了一种基于单类支持向量机(OCSVM)的组合导航容错算法。针对组合导航系统中子系统出现故障会影响整个导航系统精度的问题,采用基于单类支持向量机的方法,对故障进行检测和隔离,并对容错性能进行分析。仿真结果表明:在应用基于单类支持向量机的容错算法后,系统的故障检测模块可以有效地隔离故障数据,降低了多源组合导航系统的位置误差,其可靠性和稳定性也得到了提高。 展开更多
关键词 组合导航 容错算法 支持向量
在线阅读 下载PDF
基于单分类支持向量机和主动学习的网络异常检测研究 被引量:32
7
作者 刘敬 谷利泽 +1 位作者 钮心忻 杨义先 《通信学报》 EI CSCD 北大核心 2015年第11期136-146,共11页
对基于支持向量机和主动学习的异常检测方法进行了研究,首先利用原始数据采用无监督方式建立单分类支持向量机模型,然后结合主动学习找出对提高异常检测性能最有价值的样本进行人工标记,利用标记数据和无标记数据以半监督方式对基于单... 对基于支持向量机和主动学习的异常检测方法进行了研究,首先利用原始数据采用无监督方式建立单分类支持向量机模型,然后结合主动学习找出对提高异常检测性能最有价值的样本进行人工标记,利用标记数据和无标记数据以半监督方式对基于单分类支持向量机的异常检测模型进行扩展。实验结果表明,所提方法能够利用少量标记数据获取性能提升,并能够通过主动学习减小人工标记代价,更适用于实际网络环境。 展开更多
关键词 网络安全 异常检测 分类支持向量 主动学习
在线阅读 下载PDF
基于单类支持向量机的音频分类 被引量:4
8
作者 颜景斌 吴石 伊戈尔·艾杜阿尔达维奇 《计算机应用》 CSCD 北大核心 2009年第5期1419-1422,共4页
研究一种基于单类支持向量机的音频分类方法,能够使每一类样本都独立地获得一个决策函数,通过决策函数的最大值来判断样本所属的类。通过使用小波包变换提取语音特征向量,并融合多特征向量,将音频分为5类:纯语音、音乐、环境音、含背景... 研究一种基于单类支持向量机的音频分类方法,能够使每一类样本都独立地获得一个决策函数,通过决策函数的最大值来判断样本所属的类。通过使用小波包变换提取语音特征向量,并融合多特征向量,将音频分为5类:纯语音、音乐、环境音、含背景音语音和静音。实验结果表明这种方法具有较好的分类精度,性能优于贝叶斯、隐马尔可夫模型和神经网络分类器。 展开更多
关键词 支持向量 音频分类 特征提取 小波
在线阅读 下载PDF
基于网格搜索优化支持向量机多分类参数识别不同工艺酱酒的应用研究 被引量:6
9
作者 陈旭东 许忠平 +1 位作者 童凯 王德良 《中国酿造》 CAS 北大核心 2024年第6期213-217,共5页
为提升支持向量机(SVM)在不同工艺酱酒分类预测中的准确度,该实验利用网格搜索优化支持向量机参数,建立最优参数的支持向量机分类预测模型。通过对不同工艺酱香型白酒客观结构特征定量分析,将提取的特征信息数据经过预处理(异常值处理... 为提升支持向量机(SVM)在不同工艺酱酒分类预测中的准确度,该实验利用网格搜索优化支持向量机参数,建立最优参数的支持向量机分类预测模型。通过对不同工艺酱香型白酒客观结构特征定量分析,将提取的特征信息数据经过预处理(异常值处理、归一化操作等)后存储为样本数据集。其中样本数据分为训练样本与测试样本,通过训练样本对最优参数的SVM白酒品牌分类预测模型进行训练,测试样本对模型进行预测分类。经过试验验证,该模型的不同工艺分类识别率达到94.44%,较传统的SVM等分类算法能够快速、有效地对不同工艺的酱酒进行分类识别,显著改善分类的精度,改进后的方法实现过程也比较简单。 展开更多
关键词 不同工艺酱酒 支持向量 网格搜索 分类预测
在线阅读 下载PDF
基于单分类支持向量机的XSS攻击检测研究 被引量:6
10
作者 顾兆军 李志平 张礼哲 《计算机应用与软件》 北大核心 2021年第6期299-305,共7页
Web应用程序天然存在多种漏洞,使得跨站脚本(Cross-site scripting,XSS)攻击实施简单但能产生较大危害,如何快速准确检测出XSS攻击是Web应用程序面临的一个难题。对此,基于单分类支持向量机(One Class Support Vector Machine,OCSVM)分... Web应用程序天然存在多种漏洞,使得跨站脚本(Cross-site scripting,XSS)攻击实施简单但能产生较大危害,如何快速准确检测出XSS攻击是Web应用程序面临的一个难题。对此,基于单分类支持向量机(One Class Support Vector Machine,OCSVM)分类器提出一个新的XSS攻击检测模型。采用基于TF-IDF算法的特征向量化方法,对XSS攻击样本进行分析;基于单分类模型,对样本数据进行训练及测试;从准确率、召回率及加权调和平均数三个指标对该模型的检测效果进行评价。实验结果表明,与现有检测方法相比,该检测模型具有更好的检测效果。 展开更多
关键词 跨站脚本 分类支持向量 TF-IDF 特征向量 攻击检测
在线阅读 下载PDF
基于粒子群-支持向量机算法的激光诱导击穿光谱钢铁快速检测与分类 被引量:2
11
作者 曾庆栋 陈光辉 +8 位作者 李文鑫 孟久灵 李耿 童巨红 田志辉 张晓林 李国辉 郭连波 肖永军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1559-1565,共7页
钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意... 钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意义。利用激光诱导击穿光谱技术(LIBS)进行10种钢铁样品光谱数据的快速采集,并采用支持向量机(SVM)算法对其数据进行学习建模,得到钢铁快速分类模型。然而,由于不同钢铁样品的光谱数据特征是复杂且相似的,导致设置的模型参数也会对SVM模型的分类结果有着较大的影响。为了实现对不同牌号钢铁合金的快速检测分类,实验中采用粒子群算法(PSO)与网格寻优法两种不同方法来优化模型参数,并分别选取样品中6种微量元素(Mn、Cr、Cu、V、Mo、Ti)的17条特征谱线,和经主成分分析法(PCA)对全谱数据降维提取得到的前17个主成分作为模型的输入,建立PSO-SVM、PSO-PCA-SVM、PCA-SVM和SVM四种分类模型。实验结果表明,相比于精度最高的PCA-SVM模型的优化时间(257.84 s),PSO-SVM模型优化时间最短(11.5 s),且识别精度可达96.67%,与PCA-SVM模型的精度(97.5%)几乎相当。该结果表明LIBS结合PSO-SVM算法可实现快速的钢铁检测与分类,该方法为钢铁产品的快速检测与分类提供了一种新的解决途径。 展开更多
关键词 激光诱导击穿光谱 支持向量 粒子群算法 钢铁分类
在线阅读 下载PDF
利用改进单分类支持向量机提升舰船尾流目标的检测准确率 被引量:4
12
作者 王成 吴岩 杨廷飞 《兵工学报》 EI CAS CSCD 北大核心 2020年第9期1887-1893,共7页
舰船在航行过程中会在尾部产生一段包含大量气泡的湍流区域,通过对尾流的声学检测可以有效地跟踪船舶。基于一种改进单分类支持向量机(OCSVM)算法,利用无尾流情况下回波信号作为训练集的一个最优分类器,用于尾流回波信号模式判断。对回... 舰船在航行过程中会在尾部产生一段包含大量气泡的湍流区域,通过对尾流的声学检测可以有效地跟踪船舶。基于一种改进单分类支持向量机(OCSVM)算法,利用无尾流情况下回波信号作为训练集的一个最优分类器,用于尾流回波信号模式判断。对回波信号进行降噪处理,进而提出一种自适应特征提取方法对回波信号进行处理;将特征提取作为输入,使用两层决策边界的双阈值OCSVM算法进行尾流检测。仿真结果表明,与常规OCSVM算法相比,改进算法在不同信噪比下的检测准确率均有提升,检测准确率最高可达96.27%,具有较好的工程应用价值。 展开更多
关键词 舰船 尾流检测 特征提取 自适应阈值 分类支持向量
在线阅读 下载PDF
近邻密度辅助模糊优化孪生支持向量机的钢板表面缺陷分类 被引量:1
13
作者 侯政通 胡鹰 +1 位作者 乔磊明 邓志飞 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期1115-1126,共12页
为提升钢板表面缺陷分类精度,提出一种选择性弱化样本的分类模型。首先,在图像预处理阶段引入显著性检测算法来减少二值化后图像出现失真的影响;其次,为了降低不利的边缘样本点对模型的影响,同时又能提高有利的边缘样本点对模型的贡献,... 为提升钢板表面缺陷分类精度,提出一种选择性弱化样本的分类模型。首先,在图像预处理阶段引入显著性检测算法来减少二值化后图像出现失真的影响;其次,为了降低不利的边缘样本点对模型的影响,同时又能提高有利的边缘样本点对模型的贡献,构造了一种新的密度模糊隶属度函数对样本进行权重赋值;最后,在孪生支持向量机(TWSVM)的基础上,将构造的密度模糊隶属度函数作为优化条件嵌入模型内,提出了近邻密度辅助模糊优化的TWSVM算法,以提高分类效果。在数据集NEU上的实验结果表明,引入显著性检测算法后,重新设计的特征在整体准确率上提高了1.66%,同时采用优化后的算法进行缺陷分类,准确率达到98.33%,进一步提高了分类性能。 展开更多
关键词 图像处理 显著性检测 缺陷分类 孪生支持向量 密度函数 K近邻
在线阅读 下载PDF
基于遗传算法优化支持向量机的船舰目标识别分类 被引量:1
14
作者 杨永平 《舰船科学技术》 北大核心 2024年第4期174-178,共5页
为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算... 为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算法,优化支持向量机的惩罚因子与核参数;在参数优化后的支持向量机内,输入舰船目标特征矩样本,输出舰船目标识别分类结果。实验证明,该方法可有效提取舰船目标特征矩;经过参数优化后的支持向量机,可有效降低计算复杂度,加快检测目标识别分类效率,具备较优的舰船目标识别分类性能。该方法均可精准识别分类舰船目标。 展开更多
关键词 遗传算法 支持向量 舰船目标 识别分类 HU矩 特征描述子
在线阅读 下载PDF
基于改进支持向量机的智能电能表故障多分类方法
15
作者 陈文礼 程瑛颖 +2 位作者 舒永生 刘型志 谢广成 《电测与仪表》 北大核心 2024年第7期218-224,共7页
智能电能表故障多分类对于制定合理及时的智能电能表检修计划具有重要意义。针对智能电能表故障多分类问题,采用支持向量机构建多分类模型,所建立的模型提取智能电能表的输出电压、输出电流、输出功率、功率因数误差等数据作为分类依据... 智能电能表故障多分类对于制定合理及时的智能电能表检修计划具有重要意义。针对智能电能表故障多分类问题,采用支持向量机构建多分类模型,所建立的模型提取智能电能表的输出电压、输出电流、输出功率、功率因数误差等数据作为分类依据构建多维空间,考虑包括误差超差、直流电流开路、直流电压短路、控制回路短线在内的智能电能表模式识别故障分类。通过所建立的模型依据有限的样本信息在复杂性和学习性之间寻求平衡,对智能电能表多维度运行信息在超平面之间进行最佳分类从而进行故障分类,通过引入一类对多类的最优分类平面集进行改进从而适用于多分类模型。采用混沌粒子群算法针对所建立的基于改进支持向量机的智能电能表故障多分类方法进行求解流程设计。再通过对某配电台区智能电能表故障分类问题采用所建立的模型进行仿真,验证了模型的合理性。 展开更多
关键词 智能电能表 多故障分类 支持向量 最优分类面集 混沌粒子群算法
在线阅读 下载PDF
面向类不均衡数据的多任务博弈概率分类向量机 被引量:2
16
作者 潘海洋 李丙新 +1 位作者 郑近德 童靳于 《机电工程》 CAS 北大核心 2024年第3期430-437,共8页
在工程实际中获取的故障样本往往会呈现不均衡特点,同时传统的分类模型也会存在局限性。针对这些问题,基于稀疏贝叶斯理论、模糊隶属度等理论,提出了一种多任务博弈概率分类向量机(MGPCVM)分类方法。首先,在MGPCVM的目标函数中,设计了... 在工程实际中获取的故障样本往往会呈现不均衡特点,同时传统的分类模型也会存在局限性。针对这些问题,基于稀疏贝叶斯理论、模糊隶属度等理论,提出了一种多任务博弈概率分类向量机(MGPCVM)分类方法。首先,在MGPCVM的目标函数中,设计了博弈因子,将不同类样本质心间的博弈信息赋予每个样本特定的样本质心敏感值,以解决传统分类器对不平衡数据集分类表现较差的问题;然后,在贝叶斯框架理论下,采用截断高斯先验分布的方法,使样本参数的正负与对应的标签信息相一致,且使样本质心敏感值产生了稀疏估计;最后,将MGPCVM方法应用于两种不同实验平台采集的滚动轴承实验数据处理,进行了故障诊断有效性验证。研究结果表明:在不同的不平衡比(IR)下,MGPCVM方法的准确率均保持在95%以上,相对于支持向量机(SVM)、概率分类向量机(PCVM)等方法提升了4%~8%;与典型向量式分类方法相比,MGPCVM方法可以在不平衡数据条件下表现出优越的分类性能,适用于实际工况中数据失衡的分类问题。 展开更多
关键词 滚动轴承 故障诊断 多任务博弈概率分类向量 支持向量 概率分类向量 不均衡比 故障分类模型
在线阅读 下载PDF
基于单分类支持向量机的CAN总线异常检测方法 被引量:5
17
作者 盛铭 陈凌珊 +1 位作者 汪俊杰 杜红亮 《汽车技术》 CSCD 北大核心 2020年第5期21-25,共5页
为提高智能客车的网络安全性,提出一种基于单分类支持向量机模型的CAN总线报文异常检测方法,根据智能客车CAN总线的报文数据域特性,分析攻击对数据域产生的影响,将CAN报文的数据域提取成8个训练特征,以大量的行驶数据作为训练集和测试集... 为提高智能客车的网络安全性,提出一种基于单分类支持向量机模型的CAN总线报文异常检测方法,根据智能客车CAN总线的报文数据域特性,分析攻击对数据域产生的影响,将CAN报文的数据域提取成8个训练特征,以大量的行驶数据作为训练集和测试集,通过随机和仿真方式生成异常数据,采用交叉验证的方式对参数进行调整。试验结果表明,该模型能有效检测出异常数据,提升了智能客车的行驶安全性。 展开更多
关键词 车联网 车载CAN总线 异常检测 分类支持向量
在线阅读 下载PDF
支持向量机在多类分类问题中的推广 被引量:154
18
作者 刘志刚 李德仁 +1 位作者 秦前清 史文中 《计算机工程与应用》 CSCD 北大核心 2004年第7期10-13,65,共5页
支持向量机(SVMs)最初是用以解决两类分类问题,不能直接用于多类分类,如何有效地将其推广到多类分类问题是一个正在研究的问题。该文总结了现有主要的支持向量机多类分类算法,系统地比较了各算法的训练速度、分类速度和推广能力,并分析... 支持向量机(SVMs)最初是用以解决两类分类问题,不能直接用于多类分类,如何有效地将其推广到多类分类问题是一个正在研究的问题。该文总结了现有主要的支持向量机多类分类算法,系统地比较了各算法的训练速度、分类速度和推广能力,并分析它们的不足和有待解决的问题。 展开更多
关键词 支持向量 多类分类 多类支持向量
在线阅读 下载PDF
应用多分类多核学习支持向量机的变压器故障诊断方法 被引量:97
19
作者 郭创新 朱承治 +2 位作者 张琳 彭明伟 刘毅 《中国电机工程学报》 EI CSCD 北大核心 2010年第13期128-134,共7页
提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多... 提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多个基核函数的组合,提高了分类的精度;将模型分解为2个凸优问题进行求解,问题的复杂度低,求解速度快。诊断实例表明,该方法能保证较高的诊断准确率,具有较好的实用性和推广性。 展开更多
关键词 变压器 故障诊断 支持向量 分类多核学习
在线阅读 下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:125
20
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小二乘支持向量 多类分类 粒子群优化 故障诊断 电力变压器 准确率
在线阅读 下载PDF
上一页 1 2 114 下一页 到第
使用帮助 返回顶部