In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwav...In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.展开更多
Understanding the relation between multiple agents is very important in developing a multi agent system. Two concepts, multi agent system architecture and multi agent system architecture prototype are brought forward,...Understanding the relation between multiple agents is very important in developing a multi agent system. Two concepts, multi agent system architecture and multi agent system architecture prototype are brought forward, and the method of descrbing the relation between agents using the concepts is explored. The structure and components are designed. Based on the fact that cooperation between distributed agents is erratic, a controlled natural language communication function is designed and realized. Applying the offered interfaces, the user′s workload consumed in agent communication and management is reduced, and at the same time, robustness of the multi agent system is improved.展开更多
Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of...Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.展开更多
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st...Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.展开更多
A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust c...A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust collaborative (IMORCO). In this work, the proposed IMORCO approach combined the IMOCO method, the worst possible point (WPP) constraint cuts and the Genetic algorithm NSGA-II type as an optimizer in order to solve the robust optimization problem of multi-physics of microstructures with uncertainties. The optimization problem is hierarchically decomposed into two levels: a microstructure level, and a disciplines levels, For validation purposes, two examples were selected: a numerical example, and an engineering example of capacitive micro machined ultrasonic transducers (CMUT) type. The obtained results are compared with those obtained from robust non-distributed and distributed optimization approach, non-distributed multi-objective robust optimization (NDMORO) and multi-objective collaborative robust optimization (McRO), respectively. Results obtained from the application of the IMOCO approach to an optimization problem of a CMUT cell have reduced the CPU time by 44% ensuring a Pareto front close to the reference non-distributed multi-objective optimization (NDMO) approach (mahalanobis distance, D2M =0.9503 and overall spread, So=0.2309). In addition, the consideration of robustness in IMORCO approach applied to a CMUT cell of optimization problem under interval uncertainty has reduced the CPU time by 23% keeping a robust Pareto front overlaps with that obtained by the robust NDMORO approach (D2M =10.3869 and So=0.0537).展开更多
As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environm...As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environment on the Internet, it is of great significance to research a system flexible and capable in dynamic evolution that can find a collaboration method for agents which can be used in dynamic evolution process. With such a method, agents accomplish tasks for an overall target and at the same time, the collaborative relationship of agents can be adjusted with the change of environment. A method of task decomposition and collaboration of agents by improved contract net protocol is introduced. Finally, analysis on the result of the experiments is performed to verify the improved contract net protocol can greatly increase the efficiency of communication and collaboration in multi-agent system.展开更多
For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear l...For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.展开更多
基金Projects(51176045,51276056)supported by the National Natural Science Foundation of ChinaProject(531105050037)supported by the Changjiang Scholars and Innovative Research Team in University,ChinaProjects(201208430262,201306130031)supported by the National Studying Abroad Foundation Project of China
文摘In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.
基金TheNationalNaturalScienceFoundationofChina (No .5 9835 170 )
文摘Understanding the relation between multiple agents is very important in developing a multi agent system. Two concepts, multi agent system architecture and multi agent system architecture prototype are brought forward, and the method of descrbing the relation between agents using the concepts is explored. The structure and components are designed. Based on the fact that cooperation between distributed agents is erratic, a controlled natural language communication function is designed and realized. Applying the offered interfaces, the user′s workload consumed in agent communication and management is reduced, and at the same time, robustness of the multi agent system is improved.
基金Projects(61075065,60774045) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus tracking control problems for single-integrator dynamics of multi-agent systems with switching topology are investigated. In order to design effective consensus tracking protocols for a more general class of networks, which are aimed at ensuring that the concerned states of agents converge to a constant or time-varying reference state, new consensus tracking protocols with a constant and time-varying reference state are proposed, respectively. Particularly, by contrast with spanning tree, an improved condition of switching interaction topology is presented. And then, convergence analysis of two consensus tracking protocols is provided by Lyapunov stability theory. Moreover, consensus tracking protocol with a time-varying reference state is extended to achieve the fbrmation control. By introducing formation structure set, each agent can gain its individual desired trajectory. Finally, several simulations are worked out to illustrate the effectiveness of theoretical results. The test results show that the states of agents can converge to a desired constant or time-varying reference state. In addition, by selecting appropriate structure set, agents can maintain the expected formation under random switching interaction topologies.
基金Project(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(51134022,51221462)supported by the National Natural Science Foundation of China+1 种基金Project(CXZZ13_0927)supported by Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2013DXS03)supported by the Fundamental Research Funds for Central Universities of China
文摘Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.
文摘A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust collaborative (IMORCO). In this work, the proposed IMORCO approach combined the IMOCO method, the worst possible point (WPP) constraint cuts and the Genetic algorithm NSGA-II type as an optimizer in order to solve the robust optimization problem of multi-physics of microstructures with uncertainties. The optimization problem is hierarchically decomposed into two levels: a microstructure level, and a disciplines levels, For validation purposes, two examples were selected: a numerical example, and an engineering example of capacitive micro machined ultrasonic transducers (CMUT) type. The obtained results are compared with those obtained from robust non-distributed and distributed optimization approach, non-distributed multi-objective robust optimization (NDMORO) and multi-objective collaborative robust optimization (McRO), respectively. Results obtained from the application of the IMOCO approach to an optimization problem of a CMUT cell have reduced the CPU time by 44% ensuring a Pareto front close to the reference non-distributed multi-objective optimization (NDMO) approach (mahalanobis distance, D2M =0.9503 and overall spread, So=0.2309). In addition, the consideration of robustness in IMORCO approach applied to a CMUT cell of optimization problem under interval uncertainty has reduced the CPU time by 23% keeping a robust Pareto front overlaps with that obtained by the robust NDMORO approach (D2M =10.3869 and So=0.0537).
基金Projects(61173026,61373045,61202039)supported by the National Natural Science Foundation of ChinaProjects(K5051223008,BDY221411)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AA02A603)supported by the High-Tech Research and Development Program of China
文摘As the ability of a single agent is limited while information and resources in multi-agent systems are distributed, cooperation is necessary for agents to accomplish a complex task. In the open and changeable environment on the Internet, it is of great significance to research a system flexible and capable in dynamic evolution that can find a collaboration method for agents which can be used in dynamic evolution process. With such a method, agents accomplish tasks for an overall target and at the same time, the collaborative relationship of agents can be adjusted with the change of environment. A method of task decomposition and collaboration of agents by improved contract net protocol is introduced. Finally, analysis on the result of the experiments is performed to verify the improved contract net protocol can greatly increase the efficiency of communication and collaboration in multi-agent system.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.