期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于图像协方差无关的增量特征提取方法研究 被引量:5
1
作者 王肖锋 孙明月 葛为民 《电子与信息学报》 EI CSCD 北大核心 2019年第11期2768-2776,共9页
针对2维主成分分析(2DPCA)算法无法实现在线特征提取及无法体现完整数据结构信息等问题,该文提出一种基于图像协方差无关的增量式2DPCA(I2DPCA)算法。该算法无需对图像协方差矩阵进行特征值分解奇异值分解,复杂度将大为降低,提高了特征... 针对2维主成分分析(2DPCA)算法无法实现在线特征提取及无法体现完整数据结构信息等问题,该文提出一种基于图像协方差无关的增量式2DPCA(I2DPCA)算法。该算法无需对图像协方差矩阵进行特征值分解奇异值分解,复杂度将大为降低,提高了特征提取速度。针对I2DPCA仅提取了横向特征的问题,又提出一种增量式行列顺序2DPCA(IRC2DPCA)算法,该算法对I2DPCA的特征矩阵再次进行纵向特征提取,保留了图像的横向与纵向结构信息,实现了行列两个方向上的特征提取与数据降维。最后,以自建的物块数据集、通用的ORL和Yale人脸数据集分别进行对比实验,结果表明,该文算法在收敛率、分类率及复杂度等性能方面均得到了显著提高,其收敛率达到99%以上,分类率可达97.6%,平均处理速度为29帧/s,能够满足增量特征提取的实时处理需求。 展开更多
关键词 模式识别 协方差无关 特征提取 增量学习 2维主成分分析
在线阅读 下载PDF
一种解决大规模数据集问题的核主成分分析算法 被引量:22
2
作者 史卫亚 郭跃飞 薛向阳 《软件学报》 EI CSCD 北大核心 2009年第8期2153-2159,共7页
提出一种大规模数据集求解核主成分的计算方法.首先使用Gram矩阵生成一个Gram-power矩阵,根据线性代数的理论可知,新形成的矩阵和原先的Gram矩阵具有相同的特征向量.因此,可以把Gram矩阵的每一列看成核空间迭代算法的输入样本,这样,无... 提出一种大规模数据集求解核主成分的计算方法.首先使用Gram矩阵生成一个Gram-power矩阵,根据线性代数的理论可知,新形成的矩阵和原先的Gram矩阵具有相同的特征向量.因此,可以把Gram矩阵的每一列看成核空间迭代算法的输入样本,这样,无须使用特征分解即可迭代地计算出核主成分.该算法的空间复杂度只有O(m);在大规模数据集的情况下,时间复杂度也降低为O(pkm).实验结果表明了所提出算法的有效性.更为重要的是,在大规模数据集的情况下,当传统的特征分解技术无法使用时,该方法仍然可以提取非线性特征. 展开更多
关键词 核主成分分析 GRAM矩阵 大规模数据集 协方差无关 特征分解
在线阅读 下载PDF
基于增量式双向主成分分析的机器人感知学习方法研究 被引量:15
3
作者 王肖锋 张明路 刘军 《电子与信息学报》 EI CSCD 北大核心 2018年第3期618-625,共8页
针对直观协方差无关增量式主成分分析算法(CCIPCA)需要满足零均值高斯分布的问题,该文提出含均值差向量更新的泛化CCIPCA算法(GCCIPCA),拓展了算法的适用范围。其次,针对机器人感知学习存在的在线增量计算及有效数据降维等问题,将GCCIPC... 针对直观协方差无关增量式主成分分析算法(CCIPCA)需要满足零均值高斯分布的问题,该文提出含均值差向量更新的泛化CCIPCA算法(GCCIPCA),拓展了算法的适用范围。其次,针对机器人感知学习存在的在线增量计算及有效数据降维等问题,将GCCIPCA的增量思想引入到现有的双向主成分分析算法(BDPCA),提出基于增量式BDPCA(IBDPCA)的机器人感知学习方法。该方法直接针对图像矩阵行列方向的类散度矩阵进行迭代估计,具有一定的泛化能力和快速的增量学习能力,提高了实时处理速度。最后,以机器人待抓取物块作为感知对象进行实验,结果表明所提算法能够满足机器人感知学习的实时处理需求,相比现有的增量式主成分分析算法,在收敛率、分类识别率、计算时间及所需内存等性能方面均得到显著提升。 展开更多
关键词 机器人感知学习 增量学习 数据降维 直观协方差无关增量式主成分分析 双向主成分分析
在线阅读 下载PDF
两种改进的IPCA算法 被引量:1
4
作者 李晨 李庆风 范剑波 《计算机应用与软件》 CSCD 北大核心 2014年第6期303-307,共5页
随着互联网的迅速发展以及随之带来的数据量指数级增长,与协方差矩阵计算无关的增量式主元分析方法相对传统的批处理方式的主元分析方法更加具有优势。针对现有的增量式主元分析方法中存在的误差积累问题,提出两种改进算法。实验表明,... 随着互联网的迅速发展以及随之带来的数据量指数级增长,与协方差矩阵计算无关的增量式主元分析方法相对传统的批处理方式的主元分析方法更加具有优势。针对现有的增量式主元分析方法中存在的误差积累问题,提出两种改进算法。实验表明,两种改进算法显著提升了主元估计值的收敛性以及特征值估计值的收敛性,这对于增量式主元分析方法的现实应用是很有意义的。 展开更多
关键词 主元分析 增量式主元分析 协方差矩阵无关 人脸识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部