期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
膨胀阻燃剂-氮化碳阻燃体系改性ABS制备与性能
1
作者 任佳豪 陈航锋 +2 位作者 王挺 陈伟 黄国波 《工程塑料应用》 北大核心 2025年第7期16-24,共9页
针对丙烯腈-丁二烯-苯乙烯塑料(ABS)易燃、生烟量大的缺陷,以及膨胀型阻燃剂(IFR)单独使用时需高添加量且导致力学性能劣化的问题,提出通过液相剥离法制备石墨相C3N4纳米片(CN),并将其与IFR(聚磷酸铵、双季戊四醇、三聚氰胺的质量比为2... 针对丙烯腈-丁二烯-苯乙烯塑料(ABS)易燃、生烟量大的缺陷,以及膨胀型阻燃剂(IFR)单独使用时需高添加量且导致力学性能劣化的问题,提出通过液相剥离法制备石墨相C3N4纳米片(CN),并将其与IFR(聚磷酸铵、双季戊四醇、三聚氰胺的质量比为2∶1∶1)复配构建协同阻燃体系,经熔融共混制备ABS/CN/IFR复合材料。通过傅里叶变换红外光谱、X射线光电子能谱、扫描/透射电子显微镜等对CN及ABS/CN/IFR复合材料进行微观结构表征,结果表明CN保留三嗪环骨架且C,N元素均匀分布,CN与IFR在ABS基体中分散均匀。结果表明,CN和IFR质量分数分别为1%,20%的复合材料(ABS/CN1/IFR20)拉伸强度达67.4MPa,较纯ABS(58.5MPa)提升15.2%,且高于单独添加IFR或CN的复合材料(61.4,64.2MPa)。ABS/CN1/IFR20复合材料的最大热失重温度由纯ABS的417℃提升至435℃,热释放速率峰值和总烟释放量与ABS相比分别降低45.2%和38.5%,残炭率由纯ABS的1.47%增至15.45%,残炭分析揭示形成了连续致密膨胀且表面相对光滑的炭层。该IFR-CN阻燃体系通过CN的物理阻隔-催化成炭效应与IFR的膨胀协同作用,在降低阻燃剂用量的同时,成功解决了阻燃效率与力学性能难以兼顾的矛盾。 展开更多
关键词 膨胀型阻燃 C_(3)N_(4)纳米片 丙烯腈-丁二烯-苯乙烯塑料复合材料 协同阻燃机制 热稳定性 力学性能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部