期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进型启发式相似度模型的协同过滤推荐方法 被引量:3
1
作者 张南 林晓勇 史晟辉 《计算机应用》 CSCD 北大核心 2016年第8期2246-2251,2281,共7页
为提高协同过滤推荐方法的准确性和有效性,提出一种基于改进型启发式相似度模型的协同过滤推荐方法 PSJ。该方法考虑了用户评分差值、用户全局评分偏好和用户共同评分物品数三个因素。PSJ方法的Proximity因子使用指数函数反映用户评分... 为提高协同过滤推荐方法的准确性和有效性,提出一种基于改进型启发式相似度模型的协同过滤推荐方法 PSJ。该方法考虑了用户评分差值、用户全局评分偏好和用户共同评分物品数三个因素。PSJ方法的Proximity因子使用指数函数反映用户评分差值对用户相似度的影响,这样也可避免零除问题;将NHSM方法中的Significance因子和URP因子合并成PSJ方法的Significance因子,这使得PSJ方法的计算复杂度低于NHSM方法;而且为了提高在数据稀疏情况下的推荐效果,PSJ方法同时考虑了用户间的评分差值和用户全局评分两个因素。实验采用Top-k推荐中的查准率和查全率作为衡量标准。实验结果表明,当推荐物品数大于20时,与NHSM、杰卡尔德算法、自适应余弦相似度(ACOS)算法、杰卡尔德均方差(JMSD)算法和皮尔逊相关系数算法(SPCC)相比,PSJ方法的查准率与查全率均有提升。 展开更多
关键词 协同过滤推荐方法 启发式相似度模型 用户相似度 推荐效果 数据稀疏
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部