期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
基于分类与协同表示的刀具图像超分辨率重建
1
作者 李渊 袁德志 朱锟鹏 《组合机床与自动化加工技术》 北大核心 2025年第2期75-80,共6页
获取高分辨率的微细铣刀图像是使用视觉方法精确监测刀具磨损状态的关键,在微铣削加工过程中,由于主轴转速大、刀具直径细小,高分辨率的刀具图像是难以获取到的。为了解决此问题,提出了一种基于分类与协同表示的刀具图像超分辨率重建算... 获取高分辨率的微细铣刀图像是使用视觉方法精确监测刀具磨损状态的关键,在微铣削加工过程中,由于主轴转速大、刀具直径细小,高分辨率的刀具图像是难以获取到的。为了解决此问题,提出了一种基于分类与协同表示的刀具图像超分辨率重建算法。根据刀具图像中的图像块存在多样性,对其进行分类并训练得到相对应的字典,解决了单一字典对特征表示不足的缺点。使用协同表示的方法求得每一类字典的映射矩阵,加快重建速度。最后,考虑到刀具图像中存在许多重复的结构,添加自相似约束来提高重建效果。实验结果表明,与其它传统算法相比,提出的算法不仅有着最高的峰值信噪比和结构相似性指标,同时也有着更好的刀具边缘视觉效果。 展开更多
关键词 微铣削 超分辨率 分类 协同表示
在线阅读 下载PDF
基于保真度加权判别协同竞争表示的鲁棒图像分类
2
作者 邓永强 孙为军 《计算机应用与软件》 北大核心 2024年第6期263-272,共10页
为了深度挖掘类别之间的信息,提升方法鲁棒性和准确度,提出一种基于加权判别式协同竞争表示的鲁棒图像分类方法。该文将所有类之间的判别和竞争协作表示集成到统一模型中;在模型中引入两个判别约束和加权类别表示系数的约束,进一步提升... 为了深度挖掘类别之间的信息,提升方法鲁棒性和准确度,提出一种基于加权判别式协同竞争表示的鲁棒图像分类方法。该文将所有类之间的判别和竞争协作表示集成到统一模型中;在模型中引入两个判别约束和加权类别表示系数的约束,进一步提升类别对表征的贡献率;引入一种具有保真度的鲁棒算法,有效提升对噪声的鲁棒性。对6组图像数据集进行实验验证,结果证明提出的方法具有更高的分类精度与鲁棒性。 展开更多
关键词 图像分类 鲁棒性 协同表示 判别约束
在线阅读 下载PDF
一种用于农作物叶部病害图像识别的双权重协同表示分类方法 被引量:4
3
作者 杜海顺 蒋曼曼 +1 位作者 王娟 王胜 《计算机科学》 CSCD 北大核心 2017年第10期302-306,311,共6页
农作物病害是我国主要的农业灾害之一,准确识别病害类型是防治农作物病害的关键。因此,首先采集了小麦、玉米、花生、棉花4种农作物的22种常见叶部病害的441张图像;然后,在对每张病害图像中的叶片和病斑进行分割的基础上,分别提取了描... 农作物病害是我国主要的农业灾害之一,准确识别病害类型是防治农作物病害的关键。因此,首先采集了小麦、玉米、花生、棉花4种农作物的22种常见叶部病害的441张图像;然后,在对每张病害图像中的叶片和病斑进行分割的基础上,分别提取了描述农作物种类的叶片特征参数和描述病害类型的病斑特征参数;其次,将这两类特征参数组合并作归一化处理,得到病害图像的数据特征向量;再次,采用所有病害图像的数据特征向量,构建了一个农作物叶部病害数据集;最后,在同时考虑数据特征重要性和数据空间局部性的基础上,提出了一种双权重协同表示分类(DWCRC)方法并将其用于农作物叶部病害识别。在农作物叶部病害数据集上的实验结果表明,提出的双权重协同表示分类方法在用于农作物叶部病害识别时具有较高的识别率。 展开更多
关键词 特征提取 协同表示 双权重协同表示分类 农作物叶部病害 图像识别
在线阅读 下载PDF
基于多核协同表示分类的脑肿瘤分割算法 被引量:6
4
作者 葛婷 詹天明 牟善祥 《南京理工大学学报》 EI CAS CSCD 北大核心 2019年第5期578-585,共8页
为了从脑核磁共振(MR)图像中分割出脑肿瘤区域,为疾病诊断和手术导航提供参考,该文在核方法框架下提出一种基于多核协同表示分类的脑肿瘤分割算法。首先对脑肿瘤图像进行多尺度超像素分割,并构造基于超像素区域的空间特征,在多核框架中... 为了从脑核磁共振(MR)图像中分割出脑肿瘤区域,为疾病诊断和手术导航提供参考,该文在核方法框架下提出一种基于多核协同表示分类的脑肿瘤分割算法。首先对脑肿瘤图像进行多尺度超像素分割,并构造基于超像素区域的空间特征,在多核框架中利用多核协同表示分类方法,将原始光谱信息与所提取的多尺度空间特征融合并应用于脑肿瘤图像的分类,最后结合临床特征实现了脑肿瘤区域的分割。在MICCAI BraTS 2012和2013数据集上的测试结果表明,与现有脑肿瘤分割算法相比,该文方法能够更好地提取脑肿瘤区域,并具有较好的分割精度。 展开更多
关键词 核磁共振图像 脑肿瘤 图像分割 超像素 多尺度 多核协同表示分类
在线阅读 下载PDF
基于PCA_LDA和协同表示分类的人脸识别算法 被引量:15
5
作者 聂栋栋 贺悦悦 马勤勇 《燕山大学学报》 CAS 北大核心 2019年第2期176-181,共6页
人脸识别是近年来模式识别领域的热门课题,其中特征提取和分类器选择是人脸识别的关键步骤。主成分分析和线性判别分析是特征提取的主要方法之一,但主成分分析忽略了数据的类别信息,线性判别分析类内散度矩阵奇异,导致投影矩阵无法直接... 人脸识别是近年来模式识别领域的热门课题,其中特征提取和分类器选择是人脸识别的关键步骤。主成分分析和线性判别分析是特征提取的主要方法之一,但主成分分析忽略了数据的类别信息,线性判别分析类内散度矩阵奇异,导致投影矩阵无法直接得出。为解决以上问题,本文提出基于PCA_LDA和协同表示人脸识别算法,该算法结合主成分分析和线性判别分析,将人脸的特征信息压缩到一个更小的子空间内,再采用协同表示分类算法对测试图像进行识别。在ORL人脸库、FERET人脸库和YALE人脸库上的大量实验证实,本文算法能精确地提取到高维图像信息的主要特征,在保留特征信息的同时,大大减小了计算的复杂度。而且相比其它几种典型算法,本文算法具有更高的识别率和更健壮的抗干扰性能。 展开更多
关键词 人脸识别 主成分分析 线性判别分析 协同表示分类
在线阅读 下载PDF
基于联合协同表示与SVM决策融合的高光谱图像分类研究 被引量:5
6
作者 李铁 张新君 《计算机应用研究》 CSCD 北大核心 2017年第6期1913-1916,1920,共5页
针对高光谱图像的分类问题进行了研究,提出一种基于联合协同表示(JCR)与支持向量机(SVM)模型的决策融合分类方法。首先采用联合协同表示模型对样本与字典进行多元素分解并分别进行相应的协同表示,自适应地学习多元素的残差权重并进行线... 针对高光谱图像的分类问题进行了研究,提出一种基于联合协同表示(JCR)与支持向量机(SVM)模型的决策融合分类方法。首先采用联合协同表示模型对样本与字典进行多元素分解并分别进行相应的协同表示,自适应地学习多元素的残差权重并进行线性加权;其次用灰度共生矩阵计算出的统计特征量来训练多类SVM分类器;最后建立一种乘法融合规则将JCR与SVM相结合。在两个标准数据集上的实验结果表明,该方法比其他方法具有更好的性能。 展开更多
关键词 协同表示 高光谱图像分类 决策融合 支持向量机
在线阅读 下载PDF
基于改进协同表示的二级分类人脸识别方法 被引量:4
7
作者 施志刚 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期172-178,共7页
基于协同表示分类(CRC)算法在实际应用中的效果,考虑到样本局部相似性先验信息对分类识别的不同贡献,构建加权矩阵,并嵌入到CRC中,称为加权CRC.为进一步改善人脸识别的性能,设计了如下算法:一种将加权CRC重复两次;另一种则将其与线性表... 基于协同表示分类(CRC)算法在实际应用中的效果,考虑到样本局部相似性先验信息对分类识别的不同贡献,构建加权矩阵,并嵌入到CRC中,称为加权CRC.为进一步改善人脸识别的性能,设计了如下算法:一种将加权CRC重复两次;另一种则将其与线性表示分类(LRC)结合.两种方法的共同特点为:首先基于主成分分析(PCA)对所有图像样本进行降维,以降低计算的复杂度;其次都是在第一阶段的加权CRC中根据重构残差排序保留相关性较大的训练样本用于下一阶段的分类识别.这种缩小分类目标的做法,使识别更精确.在ORL,FERET及AR人脸数据库上通过仿真验证了本文所提方法的有效性. 展开更多
关键词 协同表示分类 样本局部相似性 加权矩阵 线性表示分类 人脸识别
在线阅读 下载PDF
基于协同表示的声振传感器网络车辆分类识别 被引量:2
8
作者 王瑞 刘宾 +1 位作者 周天润 杨羽 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第1期103-110,共8页
针对使用单一信号分类的现有车辆识别技术的不足,提出了一种基于声音信号与振动信号协同表示的车辆分类识别方法.利用梅尔倒谱系数(MFCC)提取车辆的声音信号和振动信号特征,分别对提取的2种信号特征进行多任务训练分类,以获得多任务协... 针对使用单一信号分类的现有车辆识别技术的不足,提出了一种基于声音信号与振动信号协同表示的车辆分类识别方法.利用梅尔倒谱系数(MFCC)提取车辆的声音信号和振动信号特征,分别对提取的2种信号特征进行多任务训练分类,以获得多任务协同表示的重构误差并对其进行加权处理,得出被检测目标的分类识别结果.结果表明,所提出的车辆分类识别方法对于车辆目标具有较好的分类效果和较高的识别效率. 展开更多
关键词 车辆识别 协同表示 多任务分类 特征提取 重构误差
在线阅读 下载PDF
局部系数增强判别协同表示分类法
9
作者 简彩仁 夏靖波 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期487-492,共6页
协同表示分类法(CRC)是一种基于表示理论的简单分类方法,它和它的许多扩展模型具有良好的分类性能.概率协同表示分类法(ProCRC)、判别稀疏表示分类法(DSRC)和判别协同表示分类法(DCRC)通过定义不同的判别信息项改进CRC.借鉴ProCRC、DSRC... 协同表示分类法(CRC)是一种基于表示理论的简单分类方法,它和它的许多扩展模型具有良好的分类性能.概率协同表示分类法(ProCRC)、判别稀疏表示分类法(DSRC)和判别协同表示分类法(DCRC)通过定义不同的判别信息项改进CRC.借鉴ProCRC、DSRC和DCRC,定义判别信息项增强表示系数的判别能力,基于近邻系数的相似性,定义局部系数强化项,增强近邻样本的协同表示能力,提出了局部系数增强判别协同表示分类法(LDCRC).在6个数据集上的实验表明LDCRC是有效的. 展开更多
关键词 协同表示 局部系数 判别 分类
在线阅读 下载PDF
基于核方法协同表示的高光谱图像分类
10
作者 刘遵雄 蒋中慧 任行乐 《广西大学学报(自然科学版)》 CAS 北大核心 2019年第5期1243-1251,共9页
为进一步利用高光谱图像在同一区域内像素点的相似特性完成地物分类,提出了一种基于核方法协同表示与绝对距离融合的分类算法。通过核函数将原始数据投影到高维核空间,在特征空间中用全部训练样本表示待测样本,再计算吉洪诺夫正则化下... 为进一步利用高光谱图像在同一区域内像素点的相似特性完成地物分类,提出了一种基于核方法协同表示与绝对距离融合的分类算法。通过核函数将原始数据投影到高维核空间,在特征空间中用全部训练样本表示待测样本,再计算吉洪诺夫正则化下待测像元的重构残差和每个类别表示系数绝对值向量,使用不同权重予以融合作为分类依据。在实验中使用Indian Pines和Pavia University两种高光谱图像数据对该方法进行实验验证,实验结果表明:与原协同表示(CRC)及支持向量机(SVM)相比,改进后分类算法总体分类精度和平均分类精度都有更好的表现,均达到94%以上,具有较好的鲁棒性。 展开更多
关键词 高光谱图像分类 协同表示 核方法 正则化 融合
在线阅读 下载PDF
基于协同表示的多特征融合岩石分类 被引量:8
11
作者 刘珏先 滕奇志 +1 位作者 王正勇 何小海 《计算机应用》 CSCD 北大核心 2016年第3期854-858,共5页
针对传统的岩石薄片成分分析耗时、识别率不高等问题,提出了一种基于协同表示(CR)的岩石薄片成分分析方法。首先,分析探讨了岩石薄片中颗粒纹理特性,证明将薄片图像的分层多尺度局部二值化(HMLBP)特征与灰度共生矩阵(GLCM)特征相融合能... 针对传统的岩石薄片成分分析耗时、识别率不高等问题,提出了一种基于协同表示(CR)的岩石薄片成分分析方法。首先,分析探讨了岩石薄片中颗粒纹理特性,证明将薄片图像的分层多尺度局部二值化(HMLBP)特征与灰度共生矩阵(GLCM)特征相融合能有效地表征岩石薄片中颗粒的纹理。然后,为降低识别阶段时间复杂度,采用主成分分析(PCA)方法将新特征降维到100维。最后,采用基于协同表示的分类器(CRC)进行分类识别。与基于稀疏表示的分类器(SRC)分别采用样本字典中某一个样本单独编码表征预测样本不同,基于协同表示的分类器采用样本字典中的所有样本协同编码表征预测样本,借助不同样本的同一属性提高识别率。实验结果表明该方法的识别速度较基于稀疏的分类器识别方法提高300%,识别率提高2%;在实践应用中能较好地区分岩石薄片中的石英成分和长石成分。 展开更多
关键词 协同表示 纹理特征 特征融合 分类 岩石薄片
在线阅读 下载PDF
基于PCA与协同表示的高光谱图像分类研究 被引量:10
12
作者 韩嫚莉 侯卫民 +2 位作者 孙靖国 王明 梅少辉 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第1期117-121,共5页
在基于协同表示(CR)的高光谱图像分类问题中,通常直接选用训练样本构建各类字典,但各类字典内训练样本基元间的相关性往往会降低协同表示分类性能。为此,该文提出采用主成分分析(PCA)对各类训练样本进行去相关处理以构建字典,降低了训... 在基于协同表示(CR)的高光谱图像分类问题中,通常直接选用训练样本构建各类字典,但各类字典内训练样本基元间的相关性往往会降低协同表示分类性能。为此,该文提出采用主成分分析(PCA)对各类训练样本进行去相关处理以构建字典,降低了训练样本间的相关性对分类结果的影响,可有效提高协同表示分类的有效性。高光谱真实数据分类实验结果表明,该算法可有效提高传统协同表示分类的正确率。 展开更多
关键词 分类 协同表示 高光谱 主成分分析
在线阅读 下载PDF
加权融合核稀疏和协同表示的高光谱影像分类 被引量:4
13
作者 侯良国 向泽君 楚恒 《计算机工程与设计》 北大核心 2019年第4期1058-1063,共6页
为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系... 为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系数进行加权融合,在核融合表示系数下重构分类测试样本。在ROSIS和AVIRIS两个数据集上的仿真结果表明,该算法在精度与稳定性上优于其它传统分类算法。 展开更多
关键词 高光谱分类 稀疏表示 协同表示 核技巧 加权融合
在线阅读 下载PDF
SAR图像车辆目标多模态联合协同表示分类方法 被引量:2
14
作者 张楚笛 唐涛 计科峰 《信号处理》 CSCD 北大核心 2021年第5期681-689,共9页
为提高合成孔径雷达图像车辆目标的识别性能,本文提出一种SAR图像车辆目标多模态联合协同表示分类(Joint Multimode Cooperative Representation Classification,JMCRC)方法。首先采用二维变分模态分解技术将SAR图像分解为分别表征全局... 为提高合成孔径雷达图像车辆目标的识别性能,本文提出一种SAR图像车辆目标多模态联合协同表示分类(Joint Multimode Cooperative Representation Classification,JMCRC)方法。首先采用二维变分模态分解技术将SAR图像分解为分别表征全局信息和边缘信息的多个子模态分量,接着提取各子模态的二维双向主成分分析((2D)2PCA)特征;其次将协同表示分类扩展为多模态联合协同表示分类,联合原始图像和各子模态的特征完成分类任务。在MSTAR数据集和实测数据集上对所提方法进行了验证,结果表明该方法在标准操作条件(Standard Operating Condition,SOC)以及两种型号差异条件、俯仰角变化条件和样本不平衡条件中均取得更好的分类性能。 展开更多
关键词 合成孔径雷达 车辆目标分类 二维变分模态分解 协同表示
在线阅读 下载PDF
邻域谱概率协同表示的高光谱图像分类方法 被引量:7
15
作者 齐永锋 马中玉 《激光技术》 CAS CSCD 北大核心 2019年第4期448-452,共5页
为了提高高光谱遥感图像的分类精度,通过结合像元邻域谱与概率协同表示方法,提出了一种基于空间信息与光谱信息的分类方法.首先采用插值方法生成像元的邻域谱,然后用概率协同表示方法将待测样本进行分类.用所提出的方法在AVIRIS Indian ... 为了提高高光谱遥感图像的分类精度,通过结合像元邻域谱与概率协同表示方法,提出了一种基于空间信息与光谱信息的分类方法.首先采用插值方法生成像元的邻域谱,然后用概率协同表示方法将待测样本进行分类.用所提出的方法在AVIRIS Indian Pines和Salinas scene高光谱遥感数据库上进行分类实验,并和主成分分析、支持向量机、稀疏表示分类器和协同表示分类器方法进行了比较.结果表明,所提出的方法在AVIRIS Indian Pines数据库上识别精度比主成分分析法高约17%,其识别精度和kappa系数都优于另外4种方法.该方法是一种较好的高光谱遥感图像分类方法. 展开更多
关键词 遥感 邻域谱 概率协同表示 分类
在线阅读 下载PDF
基于测试样本误差重构的协同表示分类方法 被引量:4
16
作者 王俊茜 郑文先 徐勇 《计算机科学》 CSCD 北大核心 2020年第6期104-113,共10页
基于协同表示的分类方法(Collaborative Representation-based Classification,CRC)在诸如人脸识别、物体识别等图像分类任务中取得了良好的效果。CRC利用范数正则化来解决测试样本的线性表示问题,以期得到一个较稳定的数值解。已有研... 基于协同表示的分类方法(Collaborative Representation-based Classification,CRC)在诸如人脸识别、物体识别等图像分类任务中取得了良好的效果。CRC利用范数正则化来解决测试样本的线性表示问题,以期得到一个较稳定的数值解。已有研究表明,正则化参数的选择对协同表示的数值稳定性起着非常重要的作用。文中提出了一种新的基于测试样本误差重构的协同表示分类方法(Test Sample Error Reconstruction Collaborative Representation-based Classification,TSER-CRC)。该方法首先利用较小的正则化参数计算出一个协同表示系数,使其重新构建测试样本,以削弱原始测试样本中的误差或减小原始测试样本与训练样本之间的不一致性;然后,利用较大的正则化参数,并基于重构出的测试样本再次求解协同表示系数,以得出数值较稳定的测试样本与各类别训练样本之间的关系,并以此对测试样本进行分类。该方法有效地减少了由所有训练样本构成的协同子空间所表示的测试样本中存在的误差和异常值,提高了协同表示编码系数的稳定性和图像分类的鲁棒性。通过在5个标准数据集上的实验结果表明,所提方法在图像分类精度方面明显优于传统CRC和其他一些经典的图像分类方法。 展开更多
关键词 图像分类 模式识别 表示分类 协同表示 误差重构
在线阅读 下载PDF
基于加权正则化协同表示的非均衡分类方法
17
作者 李艳婷 王帅 +3 位作者 金军委 马江涛 陈雪艳 陈俊龙 《电子与信息学报》 EI CSCD 北大核心 2023年第7期2571-2579,共9页
协同表示分类器及其变种在模式识别领域展现出优越的识别性能。然而,其成功很大程度上依赖于类别的平衡分布,高度非均衡的类别分布可能会严重影响其有效性。为弥补这一不足,该文把补子空间诱导的正则项引入到协同表示模型框架,使得改进... 协同表示分类器及其变种在模式识别领域展现出优越的识别性能。然而,其成功很大程度上依赖于类别的平衡分布,高度非均衡的类别分布可能会严重影响其有效性。为弥补这一不足,该文把补子空间诱导的正则项引入到协同表示模型框架,使得改进后的正则化模型更具判别性。进一步,为提高非均衡数据集上少数类的识别准确率,根据每类训练样本的表示能力提出一种基于最近子空间的类权学习算法。该算法根据原始数据的先验信息自适应地获取每类的权重并且能够赋予少数类更大的权重,使得最终的分类结果对少数类更加公平。所提模型具有闭式解,这展示了该方法的计算效率。在权威公开的两类和多类非均衡数据集上的实验结果表明所提方法显著优于其他主流非均衡分类算法。 展开更多
关键词 非均衡分类 自适应权重 补子空间 协同表示
在线阅读 下载PDF
基于Gabor特征与协同表示的人脸识别算法 被引量:10
18
作者 张宏星 邹刚 +1 位作者 赵键 李志勇 《计算机工程与设计》 CSCD 北大核心 2014年第2期666-670,676,共6页
基于稀疏表示的分类识别算法(SRC)在进行人脸识别处理时需要求解基于l1范数最小化问题,导致SRC方法的计算复杂度较高。基于协同表示和规则最小二乘的分类识别方法 (CRC-RLS),提出SRC算法对于分类的有效性不是取决于基于l1范数的稀疏性,... 基于稀疏表示的分类识别算法(SRC)在进行人脸识别处理时需要求解基于l1范数最小化问题,导致SRC方法的计算复杂度较高。基于协同表示和规则最小二乘的分类识别方法 (CRC-RLS),提出SRC算法对于分类的有效性不是取决于基于l1范数的稀疏性,而是由其内在的协同表示性所决定的,因此将基于l1范数的稀疏性约束条件简化为最小二乘约束问题,算法复杂度得到大幅降低。由于SRC和CRC-RLS算法均采用特征脸作为分类识别的特征矢量,导致识别鲁棒性不强。以人脸图像的规则化扩展Gabor特征作为特征矢量,结合协同表示的方法,提出了一种新的基于Gabor特征与协同表示的人脸识别算法(Gabor-CRC)。实验结果表明,该方法对于人脸图像的光照、表情和姿态等变化具备较强鲁棒性,算法运行速度较快。 展开更多
关键词 人脸识别 稀疏表示 GABOR特征 协同表示 分类算法
在线阅读 下载PDF
基于自适应协同稀疏表示的多工况故障诊断方法 被引量:6
19
作者 刘小峰 刘万 +1 位作者 孙兵 柏林 《中国电机工程学报》 EI CSCD 北大核心 2021年第18期6371-6380,共10页
针对设备故障诊断中多工况与环境扰动对故障特征表征能力的影响问题,以及故障特征的个体差异性对稀疏分类精度的影响问题,提出基于自适应协同稀疏表示的多工况故障诊断方法。该方法通过各个故障特征在K-SVD稀疏表示中的重构残差构建特... 针对设备故障诊断中多工况与环境扰动对故障特征表征能力的影响问题,以及故障特征的个体差异性对稀疏分类精度的影响问题,提出基于自适应协同稀疏表示的多工况故障诊断方法。该方法通过各个故障特征在K-SVD稀疏表示中的重构残差构建特征稀疏分类性能的评分矩阵,以评分矩阵迭代优化后得到的权值矩阵对输入特征进行协同稀疏表示,更新字典原子与稀疏系数,使得同类故障模式下的稀疏重构误差最小化,不同类故障模式下的稀疏重构误差最大化,以增强每个样本特征的协同稀疏分类性能。该方法避免了多工况故障诊断中敏感特征筛选及特征高维映射的繁琐步骤,无需大量历史故障数据支撑,通过故障特征的自适应协同稀疏表征与稀疏分类器的加权迭代优化,建立最能表征设备故障状态的稀疏字典,有效提升了稀疏分类器对多工况设备故障的鉴别能力。滚动轴承与齿轮箱故障诊断实验结果表明,提出方法比现有的稀疏分类算法与传统的神经网络分类算法,具有更高的故障辨识精度与工况环境鲁棒性。 展开更多
关键词 协同稀疏表示 自适应加权 重构残差 稀疏表示分类 设备故障诊断
在线阅读 下载PDF
基于局部表示的分类方法及其人脸识别应用 被引量:2
20
作者 殷俊 杨万扣 《计算机工程与科学》 CSCD 北大核心 2018年第3期500-506,共7页
基于稀疏表示的分类方法SRC与基于协同表示的分类方法 CRC分别通过L1范数和L2范数最小化获得具有稀疏性的线性表示系数,在人脸识别中取得了很好的效果。为了解决这两种方法没有考虑数据局部信息的问题,提出了基于局部表示的分类方法 LRC... 基于稀疏表示的分类方法SRC与基于协同表示的分类方法 CRC分别通过L1范数和L2范数最小化获得具有稀疏性的线性表示系数,在人脸识别中取得了很好的效果。为了解决这两种方法没有考虑数据局部信息的问题,提出了基于局部表示的分类方法 LRC。LRC使用测试样本局部范围内的训练样本对其进行线性表示,这样获得的局部表示系数在保持稀疏性的同时包含有效的局部信息。另外,通过求解一简单的约束最优化问题,LRC可快速获取局部表示系数。在ORL、YALE以及FERET人脸数据库上的实验结果,表明了LRC的有效性和高效性。 展开更多
关键词 稀疏表示 协同表示 局部表示 分类
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部