期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合自监督的协同注意图学习会话推荐
1
作者 王永贵 袁浩钰 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1878-1886,共9页
基于图神经网络的会话推荐目的是利用给定的匿名交互序列预测用户下次将交互的潜在项目.为解决图神经网络方法中存在的过度平滑问题和现有的会话推荐忽略了数据稀疏性影响,以及因使用交叉熵而产生严重的过拟合问题.本文提出了一种融合... 基于图神经网络的会话推荐目的是利用给定的匿名交互序列预测用户下次将交互的潜在项目.为解决图神经网络方法中存在的过度平滑问题和现有的会话推荐忽略了数据稀疏性影响,以及因使用交叉熵而产生严重的过拟合问题.本文提出了一种融合自监督的协同注意图学习会话推荐模型(SI-CAGL).首先SI-CAGL在学习到会话中项目的准确表示,其次使用协同注意图学习与修改自注意力机制的方法进行自监督学习,最后使用修正边缘平滑函数与归一化相结合的方法进行预测.在两个真实数据集上进行多次实验,与先进基线模型相比,SI-CAGL在Diginetica上Recall@20和MRR@20至少提升了3.28%和3.38%,在Gowalla上Recall@20和MRR@20至少提升了2.88%和2.13%,推荐性能有明显提升. 展开更多
关键词 自监督学习 协同注意图学习 会话推荐 修正边缘平滑函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部