分布式能源、可调负荷及储能装置大规模接入配电网运行带动“源-网-荷-储”调控模式的转变,配电网与分布式资源之间频繁双向互动对通信网全面感知与广域传输能力提出更高要求。电力物联网与5G的融合通过云-边-端多层级资源的深度协同提...分布式能源、可调负荷及储能装置大规模接入配电网运行带动“源-网-荷-储”调控模式的转变,配电网与分布式资源之间频繁双向互动对通信网全面感知与广域传输能力提出更高要求。电力物联网与5G的融合通过云-边-端多层级资源的深度协同提供有效的解决方案。针对现有云-边-端协同技术在电力物联网与5G融合应用面临的与电力业务需求适配性不足、异构资源调度协同性差、数据隐私安全难以保障等挑战,文章提出电力物联网5G云-边-端多级协同框架,支撑分布式资源与配电网的协同互动;在此基础上,基于联邦深度Q学习,提出基于半分布式人工智能的云-边-端协同资源调度方法,在高可靠低时延约束下实现端侧任务卸载、功率控制与云侧/边侧计算资源分配的协同优化;最后,通过算例分析验证该技术在能耗、时延、吞吐量等方面的性能优势,同基于层次分析法和深度Q学习的边缘网络任务卸载算法(distribution offloading algorithm based on analytic hierarchy process and deep Q network,AHP-DQN)和能量感知边缘计算移动管理算法(energy-aware mobility management algorithm for mobile edge computing,EMM)相比,平均吞吐量分别提高15.29%和23.87%,总排队时延分别降低53.35%和62.20%,能够满足电力物联网业务差异化通信需求,支撑分布式资源接入配电网双向互动。展开更多
[目的/意义]在大田作业、野外放牧、果园采收等典型农业应用场景下,多机器人(包括移动式智能农机装备等)高精度快速协同同步定位与建图(Simultaneous Localization and Mapping,SLAM)是智慧农业乃至无人农场的关键基础和核心支撑。与单...[目的/意义]在大田作业、野外放牧、果园采收等典型农业应用场景下,多机器人(包括移动式智能农机装备等)高精度快速协同同步定位与建图(Simultaneous Localization and Mapping,SLAM)是智慧农业乃至无人农场的关键基础和核心支撑。与单机器人SLAM相比,多机器人协同SLAM具有精度高、范围广、实时性强、扩展性好等优势,但在农业种植和养殖等自然复杂环境下,由于场景动态可变、地形复杂多变、环境丰富多样、通信约束受限等多重因素叠加影响,尚存在诸多问题与挑战。[进展]现有研究主要是从通用基础技术的视角对多机器人SLAM的研究脉络、优缺点、适用条件和关键核心问题等方面进行总结归纳,但缺乏针对农业复杂场景特性的剖析。本研究面向农业复杂场景的主要特征,以“多传感器数据融合—协同定位—协同建图—回环检测”为关键技术主线,分析了多机器人协同SLAM的优缺点及其在农业领域的适用性;从多机器人协同作业的视角,明晰了集中式、分布式和混合式三种主要协同框架的优势、局限性及适用的典型农业应用场景;进而探讨了农业复杂场景下多机器人SLAM存在的多传感器融合精度偏低、协同通信环境受限、相对位姿估计准确性不高等突出问题。[结论/展望]从优化数据融合底层算法、融合深度学习和强化学习、引入大语言模型、应用数字孪生技术等方面,对农业复杂环境下多机器人SLAM的未来发展方向和趋势进行了展望。展开更多
文摘分布式能源、可调负荷及储能装置大规模接入配电网运行带动“源-网-荷-储”调控模式的转变,配电网与分布式资源之间频繁双向互动对通信网全面感知与广域传输能力提出更高要求。电力物联网与5G的融合通过云-边-端多层级资源的深度协同提供有效的解决方案。针对现有云-边-端协同技术在电力物联网与5G融合应用面临的与电力业务需求适配性不足、异构资源调度协同性差、数据隐私安全难以保障等挑战,文章提出电力物联网5G云-边-端多级协同框架,支撑分布式资源与配电网的协同互动;在此基础上,基于联邦深度Q学习,提出基于半分布式人工智能的云-边-端协同资源调度方法,在高可靠低时延约束下实现端侧任务卸载、功率控制与云侧/边侧计算资源分配的协同优化;最后,通过算例分析验证该技术在能耗、时延、吞吐量等方面的性能优势,同基于层次分析法和深度Q学习的边缘网络任务卸载算法(distribution offloading algorithm based on analytic hierarchy process and deep Q network,AHP-DQN)和能量感知边缘计算移动管理算法(energy-aware mobility management algorithm for mobile edge computing,EMM)相比,平均吞吐量分别提高15.29%和23.87%,总排队时延分别降低53.35%和62.20%,能够满足电力物联网业务差异化通信需求,支撑分布式资源接入配电网双向互动。
文摘[目的/意义]在大田作业、野外放牧、果园采收等典型农业应用场景下,多机器人(包括移动式智能农机装备等)高精度快速协同同步定位与建图(Simultaneous Localization and Mapping,SLAM)是智慧农业乃至无人农场的关键基础和核心支撑。与单机器人SLAM相比,多机器人协同SLAM具有精度高、范围广、实时性强、扩展性好等优势,但在农业种植和养殖等自然复杂环境下,由于场景动态可变、地形复杂多变、环境丰富多样、通信约束受限等多重因素叠加影响,尚存在诸多问题与挑战。[进展]现有研究主要是从通用基础技术的视角对多机器人SLAM的研究脉络、优缺点、适用条件和关键核心问题等方面进行总结归纳,但缺乏针对农业复杂场景特性的剖析。本研究面向农业复杂场景的主要特征,以“多传感器数据融合—协同定位—协同建图—回环检测”为关键技术主线,分析了多机器人协同SLAM的优缺点及其在农业领域的适用性;从多机器人协同作业的视角,明晰了集中式、分布式和混合式三种主要协同框架的优势、局限性及适用的典型农业应用场景;进而探讨了农业复杂场景下多机器人SLAM存在的多传感器融合精度偏低、协同通信环境受限、相对位姿估计准确性不高等突出问题。[结论/展望]从优化数据融合底层算法、融合深度学习和强化学习、引入大语言模型、应用数字孪生技术等方面,对农业复杂环境下多机器人SLAM的未来发展方向和趋势进行了展望。