基于离散事件触发通讯机制,研究了在稀疏数据传输情形下非线性网络化控制系统(Nonlinear Networked Control System,NNCS)的满意容错控制问题。基于事件触发稀疏数据传输背景建立了带执行器饱和约束的闭环故障系统模型;利用提出的安全...基于离散事件触发通讯机制,研究了在稀疏数据传输情形下非线性网络化控制系统(Nonlinear Networked Control System,NNCS)的满意容错控制问题。基于事件触发稀疏数据传输背景建立了带执行器饱和约束的闭环故障系统模型;利用提出的安全度定义和Lyapunov稳定性理论,推证出使NNCS具有广义H_∞/H_2性能和α-安全度的容错收缩不变集充分条件和相应的协同设计方法;通过仿真算例验证了理论方法在协同设计方面的可行性和节约网络资源方面的有效性,并提出了实际应用中应遵循的折中类定性原则。展开更多
To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on ext...To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.展开更多
文摘基于离散事件触发通讯机制,研究了在稀疏数据传输情形下非线性网络化控制系统(Nonlinear Networked Control System,NNCS)的满意容错控制问题。基于事件触发稀疏数据传输背景建立了带执行器饱和约束的闭环故障系统模型;利用提出的安全度定义和Lyapunov稳定性理论,推证出使NNCS具有广义H_∞/H_2性能和α-安全度的容错收缩不变集充分条件和相应的协同设计方法;通过仿真算例验证了理论方法在协同设计方面的可行性和节约网络资源方面的有效性,并提出了实际应用中应遵循的折中类定性原则。
基金Project(51175017)supported by the National Natural Science Foundation of ChinaProject(YWF-12-RBYJ-008)supported by the Innovation Foundation of Beihang University for PhD Graduates,ChinaProject(20111102110011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.