期刊文献+
共找到875篇文章
< 1 2 44 >
每页显示 20 50 100
协同免疫量子粒子群算法求非合作博弈Nash均衡解 被引量:11
1
作者 刘露萍 贾文生 蔡江华 《计算机应用与软件》 北大核心 2019年第8期203-209,共7页
考虑n人非合作博弈Nash均衡求解问题。将混合策略意义下的Nash均衡转化为最优化问题;把免疫记忆、自我进化、信息共享机制加入量子粒子群算法,通过概率浓度选择公式来保持种群的多样性,提出协同免疫量子粒子群算法。4个经典的数值算例说... 考虑n人非合作博弈Nash均衡求解问题。将混合策略意义下的Nash均衡转化为最优化问题;把免疫记忆、自我进化、信息共享机制加入量子粒子群算法,通过概率浓度选择公式来保持种群的多样性,提出协同免疫量子粒子群算法。4个经典的数值算例说明,该算法优于免疫粒子群算法,具有较强的寻优能力和收敛性能。 展开更多
关键词 NASH均衡 概率浓度选择 量子粒子算法 协同免疫量子粒子群算法
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络 被引量:1
2
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
3
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
改进粒子群的多无人机协同搜索路径优化 被引量:3
4
作者 赵迅 刘云平 +3 位作者 王炎 还红华 徐梁 吴士林 《兵器装备工程学报》 北大核心 2025年第1期213-220,共8页
粒子群算法具有收敛速度快、结构简单、计算复杂度低等优点广泛应用于搜索领域,然而多无人机采用传统粒子群算法协同搜索时,由于算法具有随机性且群体内共享信息并未进行筛选,会出现搜索路径大量重复的现象,造成额外的资源消耗。针对此... 粒子群算法具有收敛速度快、结构简单、计算复杂度低等优点广泛应用于搜索领域,然而多无人机采用传统粒子群算法协同搜索时,由于算法具有随机性且群体内共享信息并未进行筛选,会出现搜索路径大量重复的现象,造成额外的资源消耗。针对此问题,提出一种改进粒子群的多无人机协同搜索算法。将传统粒子群算法应用于多无人机协同搜索,在此基础上利用蚁群算法对粒子群进行改进,通过蚁群算法对群体内共享的位置信息进行筛选,计算出信息素指引位置,然后将信息素指引位置用于无人机搜索过程中粒子群算法的迭代,从而减少无人机往复搜索的问题。仿真实验表明:该搜索算法可以有效降低搜索的重复路径,减少搜索的总路程。 展开更多
关键词 多无人机 粒子算法 算法 协同搜索 路径优化
在线阅读 下载PDF
基于协同进化粒子群优化算法的水资源配置模型及应用 被引量:4
5
作者 刘洪波 菅浩然 《人民黄河》 CAS 北大核心 2024年第11期74-79,共6页
面向新发展阶段的城市水资源配置具有多目标、多变量、约束条件复杂、求解结果非线性、求解过程困难等特征。针对线性规划、动态规划、非线性规划等传统优化算法在解决水资源配置问题中求解结果不合理、计算效率低,求解多目标问题收敛... 面向新发展阶段的城市水资源配置具有多目标、多变量、约束条件复杂、求解结果非线性、求解过程困难等特征。针对线性规划、动态规划、非线性规划等传统优化算法在解决水资源配置问题中求解结果不合理、计算效率低,求解多目标问题收敛慢等问题,提出了基于协同进化粒子群优化(CPSO)算法的多目标水资源优化配置模型。以郑州市为例,构建了以实现社会、经济和生态效益的最大化为目标,供水量、需水量、供水能力和水库库容为约束的水资源配置模型。通过输入郑州市各计算单元和用水部门的用水需求量和可用水量,该模型计算并输出郑州市9个区在2019年、2035年的缺水率。结果表明:郑州市供水的区域分布比较均衡,缺水率在可接受范围内;该模型算法进化速度较快,进化的稳定性较优,优化结果在种群中可以很好地保留且对进化方向的主导性很强,可以有效地应用于解决水资源配置问题,并提升模型计算效率,为水资源管理部门提供技术支持。 展开更多
关键词 协同进化 粒子优化算法 水资源优化配置 郑州市
在线阅读 下载PDF
基于改进量子粒子群算法的新能源汽车换电站优化布局 被引量:7
6
作者 韩顺杰 于渲铎 +1 位作者 李东奇 董吉哲 《科学技术与工程》 北大核心 2024年第27期11720-11725,共6页
为了针对在新能源换电汽车发展普及过程中的换电站建设相关问题,通过建立以换电站运营目标年限年均综合费用最小为目标,综合考虑土地价格、建站成本、运营成本、维护成本、道路流量、服务能力等因素的优化目标数学模型,以换电能力、换... 为了针对在新能源换电汽车发展普及过程中的换电站建设相关问题,通过建立以换电站运营目标年限年均综合费用最小为目标,综合考虑土地价格、建站成本、运营成本、维护成本、道路流量、服务能力等因素的优化目标数学模型,以换电能力、换电距离为约束条件。同时利用改进的量子粒子群算法对模型求解,算法引入自适应调整的惯性权重,提高粒子的整体搜索能力,利用Logistic混沌映射初始化种群信息,提升种群的遍历性,通过Levy飞行策略与Cauchy变异策略,提升种群的多样性并扩大算法在迭代过程中的搜索空间,进一步提升算法的全局搜索能力并快速跳出局部最优区域。利用该算法对长春市宽城区进行实际规划,将该区域相关数据引入建立的数学模型,确定了该区域内建设四座换电站时符合预期建设目标,同时确定各电站建设位置及容量,证明研究结果的可行性与实用性。 展开更多
关键词 新能源汽车 改进量子粒子算法 换电站 选址定容
在线阅读 下载PDF
自适应免疫粒子群算法在光伏MPPT中的应用 被引量:3
7
作者 李练兵 王兰超 +2 位作者 朱乐 韩琪琪 杨少波 《电源技术》 CAS 北大核心 2024年第4期749-754,共6页
光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程... 光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程中易早熟收敛至局部最优、迭代后期收敛速度慢以及精度低等问题,提出了一种自适应免疫粒子群算法。该算法对惯性权重和学习因子进行自适应调整,并且与免疫算法相结合。仿真结果表明:该算法在静态局部遮阴以及动态局部遮阴条件下,均能追踪到最大功率点,并且收敛速度更快,精度更高,稳定性更好。 展开更多
关键词 光伏电池 局部遮阴 MPPT 自适应免疫粒子算法
在线阅读 下载PDF
基于混合粒子群算法的防空装备软硬杀伤目标分配方法研究 被引量:1
8
作者 刘世豪 崔小舟 +2 位作者 王斐斐 黄骁飞 王聪 《现代防御技术》 北大核心 2025年第1期97-107,共11页
在防空体系软硬协同作战模式中,对软杀伤和硬杀伤装备协同拦截进行合理高效的目标分配具有重要的意义,提出了一种基于混合粒子群算法的防空装备软硬杀伤目标分配方法。分析软硬协同拦截问题对应的寻优指标,使用硬杀伤装备射击有利度和... 在防空体系软硬协同作战模式中,对软杀伤和硬杀伤装备协同拦截进行合理高效的目标分配具有重要的意义,提出了一种基于混合粒子群算法的防空装备软硬杀伤目标分配方法。分析软硬协同拦截问题对应的寻优指标,使用硬杀伤装备射击有利度和软杀伤装备压制、频率、角度等干扰有利度指标整合目标综合拦截效能指标,将传统粒子群算法与遗传算法的优势进行结合,采用改进的混合粒子群算法,并设计了适合软硬装备同时分配的编码结构和加快算法收敛的粒子生成引导操作。仿真结果表明:在野战固定阵地防空场景中,混合粒子群算法可快速得到目标分配最优方案,相较于传统算法,目标综合拦截效能明显提升,在防空指挥控制系统中具有一定的工程应用价值。 展开更多
关键词 软硬协同 防空体系 目标分配 粒子算法 指挥控制
在线阅读 下载PDF
基于粒子群算法的燃煤CFB锅炉一氧化碳与多污染物在线减排优化
9
作者 康子为 陈玲红 +4 位作者 武燕燕 吴俊 徐碧涛 金杭良 曲培培 《热力发电》 北大核心 2025年第7期23-32,共10页
深度调峰过程中燃煤循环流化床(CFB)锅炉面临CO排放质量浓度高及其与NO_(x)、SO_(2)等多种污染物协同减排缺乏理论指导等问题。以某150 t/h燃煤CFB锅炉为研究对象,构建基于长短时记忆(LSTM)神经网络、注意力机制(Attention)与极端梯度提... 深度调峰过程中燃煤循环流化床(CFB)锅炉面临CO排放质量浓度高及其与NO_(x)、SO_(2)等多种污染物协同减排缺乏理论指导等问题。以某150 t/h燃煤CFB锅炉为研究对象,构建基于长短时记忆(LSTM)神经网络、注意力机制(Attention)与极端梯度提升(XGBoost)算法的锅炉炉膛出口CO、NO_(x)、SO_(2)等多种污染物排放质量浓度快速预测模型,并耦合粒子群优化(PSO)算法建立CO在线减排优化策略模型。采用2023年36298条实际运行数据作为训练样本进行炉膛出口污染物排放相关性分析,筛选出污染物质量浓度预测模型的输入参数,并设定适应度函数和边界函数,通过减排优化模型计算,提出了不同负荷范围CFB锅炉CO、NO_(x)、SO_(2)质量浓度在线减排寻优策略,并评估其在实际锅炉在线优化运行应用的可行性。 展开更多
关键词 CFB锅炉 长短时记忆神经网络 粒子算法 CO 协同减排
在线阅读 下载PDF
基于改进分数阶粒子群算法的多无人车取送货任务调度方法
10
作者 陈玉全 冯丽曼 +2 位作者 孙克璇 张楠杰 王冰 《农业机械学报》 北大核心 2025年第6期109-118,共10页
针对农产品运输场景下产地与销地配送环节中的多无人车协同任务分配问题,首先构建涵盖行程成本、时间违反成本、负载违反成本和启动成本的多无人车取送货任务调度组合优化模型。提出一种改进分数阶粒子群算法(Improved fractional order... 针对农产品运输场景下产地与销地配送环节中的多无人车协同任务分配问题,首先构建涵盖行程成本、时间违反成本、负载违反成本和启动成本的多无人车取送货任务调度组合优化模型。提出一种改进分数阶粒子群算法(Improved fractional order particle swarm optimization,IFOPSO)。通过在粒子群算法(PSO)中引入分数阶列维随机步长,提高PSO的全局搜索能力,进一步设计列维阶次的自适应调整机制,提高IFOPSO的收敛精度和寻优性能。基于10个基准函数的对比实验结果表明,提出的IFOPSO算法在收敛速度、精度以及全局搜索能力等方面,相较于现有算法表现出显著优势。最后将IFOPSO算法应用于多无人车任务分配问题的求解中,并与传统PSO、改进PSO和分数阶PSO算法进行对比实验,结果表明该算法能够有效降低调度成本,并快速找到合理的取送货方案。 展开更多
关键词 农产品运输 任务分配 多车协同 分数阶粒子算法 列维随机步长 自适应列维阶次
在线阅读 下载PDF
基于差分进化粒子群混合算法的多无人机协同区域搜索策略 被引量:7
11
作者 赖幸君 唐鑫 +2 位作者 林磊 王志胜 丛玉华 《弹箭与制导学报》 北大核心 2024年第1期89-97,共9页
为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过... 为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过程中的能耗为目标,建立无人机区域搜索滚动时域优化目标函数,指导无人机在线决策搜索路线;然后针对传统群智能优化算法易陷入局部最优的缺陷,设计差分进化粒子群混合算法在线求解该多目标优化问题,提高算法的寻优性能,从而提高无人机的搜索效率。最后,通过数值仿真实验,对所提算法进行验证,仿真结果表明,文中设计的基于差分进化粒子群混合算法的多无人机协同区域搜索策略与传统的群智能优化算法相比具有更高的区域搜索效率。 展开更多
关键词 多无人机 协同搜索 智能算法 滚动时域优化 差分进化粒子混合算法
在线阅读 下载PDF
基于量子行为粒子群算法的舱室噪声监测点优化布置 被引量:2
12
作者 郭强 时胜国 何辉辉 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第8期1488-1496,共9页
针对舱室噪声在线监测及声场预报问题,本文提出了一种基于量子行为粒子群算法的舱室内部声监测点优化布置方法。根据研究频段范围确定所需声腔模态阶数,计算全部备选监测点位置处各阶声腔模态的声场分布,采用模态置信矩阵作为目标函数,... 针对舱室噪声在线监测及声场预报问题,本文提出了一种基于量子行为粒子群算法的舱室内部声监测点优化布置方法。根据研究频段范围确定所需声腔模态阶数,计算全部备选监测点位置处各阶声腔模态的声场分布,采用模态置信矩阵作为目标函数,基于量子行为粒子群算法对监测点位置进行优化,获得优化布置方案。从声腔模态采样的正交性及内外声场响应的角度与其他测点布置方案进行了性能比较。研究表明:本文方法优化得到的测点布置方案采集声腔模态信息更全面,可有效提升舱室内声场的重建精度和基于舱室内声场监测的水下辐射噪声预报精度。 展开更多
关键词 测点优化布置 舱室噪声在线监测 量子行为粒子算法 声腔模态 模态置信矩阵 水下辐射噪声预报 声场预报 声激励
在线阅读 下载PDF
免疫粒子群算法的测试数据生成 被引量:2
13
作者 焦重阳 周清雷 张文宁 《计算机工程与设计》 北大核心 2024年第5期1435-1442,共8页
为有效改善粒子群算法进化后期收敛速度慢,克服易陷入局部极值的缺陷,提出一种自适应免疫粒子群算法并在面向路径的测试数据生成中得到应用。本文提出自适应的惯性权重的调整方法和学习因子的调节策略,加快算法的搜索速率;引入免疫算法... 为有效改善粒子群算法进化后期收敛速度慢,克服易陷入局部极值的缺陷,提出一种自适应免疫粒子群算法并在面向路径的测试数据生成中得到应用。本文提出自适应的惯性权重的调整方法和学习因子的调节策略,加快算法的搜索速率;引入免疫算法中的免疫算子,提出抗体的浓度调节机制,使得粒子群的多样性更加丰富,提升算法的寻优能力;通过免疫选择操作,避免算法的早熟收敛;以分支函数叠加法构造适应度函数。实验结果表明,该算法避免了粒子群算法早熟收敛现象的发生,有效地提高了测试数据自动生成的效率。 展开更多
关键词 粒子算法 测试数据生成 惯性权重 学习因子 免疫算子 多样性 免疫选择
在线阅读 下载PDF
基于竞争式协同进化的混合变量粒子群优化算法 被引量:3
14
作者 张虎 张衡 +4 位作者 黄子路 王喆 付青坡 彭瑾 王峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第4期844-858,共15页
现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协... 现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。 展开更多
关键词 混合变量优化 协同策略 进化算法 粒子
在线阅读 下载PDF
ACCQPSO:一种改进的量子粒子群优化算法及其应用 被引量:1
15
作者 孙隽丰 李成海 宋亚飞 《信息网络安全》 CSCD 北大核心 2024年第4期574-586,共13页
针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始... 针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始种群的随机性与遍历性,提高算法寻优能力;然后,通过纵向交叉操作进行种群中个体的信息交换,并引入自适应交叉概率公式,增加种群多样性,提高算法的寻优精度;最后,在实验中,一方面,选取8个函数在高低两个维度进行验证,同时进行Wilcoxon秩和检验分析以及消融实验,验证该算法相较其他算法的有效性;另一方面,通过算法优化BP神经网络应用到网络安全态势预测任务中,实验结果表明该算法收敛速度相较于对比算法有大幅度提升。 展开更多
关键词 量子粒子优化算法 混沌映射 交叉算子 自适应调整策略 BP神经网络
在线阅读 下载PDF
免疫粒子群算法在修正高斯模型下的源强反演 被引量:1
16
作者 万邦银 蒯念生 +2 位作者 何雄元 彭敏君 邓利民 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期132-138,共7页
为提高危险气体泄漏溯源定位的科学性和实效性,确定危险气体泄漏位置和强度是事故应急响应的关键。首先,根据质量守恒定律,分析、改进近似高斯分布的气体羽流扩散幅度,修正高斯烟羽模型;然后,基于免疫浓度筛选机制作为主策略的免疫算法(... 为提高危险气体泄漏溯源定位的科学性和实效性,确定危险气体泄漏位置和强度是事故应急响应的关键。首先,根据质量守恒定律,分析、改进近似高斯分布的气体羽流扩散幅度,修正高斯烟羽模型;然后,基于免疫浓度筛选机制作为主策略的免疫算法(IA),通过与粒子群算法(PSO)耦合,将混合免疫粒子群(PSO-IA)算法应用到源强反演中;最后,验证PSO-IA算法溯源定位效果。结果表明:与模式搜索法(PS)、遗传算法(GA)、PSO相比,修正高斯烟羽模型预测值误差均下降2%左右;混合PSO-IA算法相较PSO算法反演源强效果有明显提升,其算法定位误差为1.3 m,求解源强误差为0.8%,单次计算时间小于1 s,能实现快速、准确定位并估算源强度。 展开更多
关键词 免疫粒子(PSO-IA)算法 修正高斯烟羽模型 源强反演 危险气体泄漏 求解精度
在线阅读 下载PDF
精英免疫克隆选择的协同进化粒子群算法 被引量:16
17
作者 刘朝华 李小花 章兢 《电子学报》 EI CAS CSCD 北大核心 2013年第11期2167-2173,共7页
提出一种精英免疫克隆选择的协同进化粒子群算法(Elite immune clonal selection co-evolutionary particle swarm optimization,EICS-CPSO).算法借鉴了协同进化思想和精英策略,基于精英种群与普通群体并行协同进化框架.高适应度的精英... 提出一种精英免疫克隆选择的协同进化粒子群算法(Elite immune clonal selection co-evolutionary particle swarm optimization,EICS-CPSO).算法借鉴了协同进化思想和精英策略,基于精英种群与普通群体并行协同进化框架.高适应度的精英个体组成精英团体,运用自适应小波变异的免疫克隆选择算子对精英团体进行提升引导操作.普通种群间个体极值采用柯西交互学习机制提高微粒个体极值收敛性能;迁移操作进一步推进了整体信息共享与协同进化.实验结果表明该算法收敛精度快且全局搜索能力强,且具有较好的动态优化性能.实验分析表明该算法对参数不敏感,易于使用. 展开更多
关键词 精英策略 协同进化 粒子 人工免疫系统 小波
在线阅读 下载PDF
基于改进量子粒子群优化算法的机器人逆运动学求解 被引量:12
18
作者 陈卓凡 周坤 +1 位作者 秦菲菲 王斌锐 《中国机械工程》 EI CAS CSCD 北大核心 2024年第2期293-304,共12页
针对工业机器人在逆运动学求解过程中存在的位姿奇异、解不唯一、求解精度低等问题,提出了一种改进量子粒子群算法。首先,利用D-H参数法建立机器人运动学模型,以机械臂末端最小位姿误差为主要优化目标,加入运动前后关节角变化最小、行... 针对工业机器人在逆运动学求解过程中存在的位姿奇异、解不唯一、求解精度低等问题,提出了一种改进量子粒子群算法。首先,利用D-H参数法建立机器人运动学模型,以机械臂末端最小位姿误差为主要优化目标,加入运动前后关节角变化最小、行程平稳连续的约束条件,设计了目标函数;其次,通过采用Levy飞行策略改进粒子更新方式、非线性地动态调整收缩膨胀因子、采用变权重方法计算最优平均位置等方法设计了一种改进量子粒子群优化(IQPSO)算法;然后,模拟单点位姿和连续轨迹两种不同的求解情况进行三种算法(IQPSO、APSO、QPSO)的仿真对比实验,结果表明IQPSO算法具有收敛速度快、求解精度高等优点;最后,将IQPSO算法用于机械臂本体进行实物验证,实验结果表明IQPSO算法求解出的插值点所组成的轨迹连续且平滑,进一步证明了该算法应用于实际运动控制中的稳定性和可行性。 展开更多
关键词 工业机器人 逆运动学求解 目标函数 改进量子粒子优化算法
在线阅读 下载PDF
基于免疫粒子群算法的多UCAV协同任务分配 被引量:7
19
作者 有伟 王社伟 陶军 《计算机工程与应用》 CSCD 北大核心 2010年第32期224-227,235,共5页
任务分配问题是多UCAV协同控制的关键和有效保证。综合考虑问题的多规划指标和多类复杂约束条件,建立了基于多目标整数规划的协同多任务分配模型。通过模拟生物免疫系统的免疫特征和运行机制,并将粒子群优化作为算法的局部搜索算子,设... 任务分配问题是多UCAV协同控制的关键和有效保证。综合考虑问题的多规划指标和多类复杂约束条件,建立了基于多目标整数规划的协同多任务分配模型。通过模拟生物免疫系统的免疫特征和运行机制,并将粒子群优化作为算法的局部搜索算子,设计了一种适用于问题求解的免疫粒子群算法,使算法同时具有人工免疫算法种群多样性好、粒子群优化局部搜索能力和进化方向性强等特点。仿真实验表明该方法具有良好的优化效果和时间特性,可较好地解决多UCAV协同任务分配问题。 展开更多
关键词 无人作战飞机 协同控制 任务分配 免疫粒子优化 人工免疫
在线阅读 下载PDF
具有学习行为的协同量子粒子群算法 被引量:3
20
作者 董虎胜 陆萍 龚声蓉 《计算机应用研究》 CSCD 北大核心 2014年第9期2588-2591,共4页
提出了一种具有学习行为的协同量子粒子群算法(LCQPSO)。针对量子粒子群(QPSO)存在的早熟收敛问题,从两方面对其进行改进:引入多子群协同搜索策略提高种群的全局搜索能力,使其在进化后期依然保持多样性;赋予粒子学习行为,提高种群的局... 提出了一种具有学习行为的协同量子粒子群算法(LCQPSO)。针对量子粒子群(QPSO)存在的早熟收敛问题,从两方面对其进行改进:引入多子群协同搜索策略提高种群的全局搜索能力,使其在进化后期依然保持多样性;赋予粒子学习行为,提高种群的局部搜索能力。实验中对LCQPSO算法的子群规模与学习概率参数进行了分析,并利用标准测试函数对LCQPSO与PSO、QPSO等算法进行了比较测试,结果表明LCQPSO算法具有更优秀的收敛速度与精度,且能够有效地避免陷入局部极值。 展开更多
关键词 量子粒子 协同进化 学习行为 收敛
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部