期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
一种结合特征选择和链接过滤的主动协作分类方法 被引量:1
1
作者 李丽娜 欧阳继红 +1 位作者 刘大有 高文杰 《计算机研究与发展》 EI CSCD 北大核心 2013年第11期2349-2357,共9页
分类是网络数据挖掘中的重要研究课题之一.协作分类利用网络节点之间的依赖关系对相互链接的节点集合进行组合分类,其精度高于传统的分类方法,受到广泛关注,并被应用于文档分类、蛋白质结构预测、图像处理和社会网络分析等众多领域.提... 分类是网络数据挖掘中的重要研究课题之一.协作分类利用网络节点之间的依赖关系对相互链接的节点集合进行组合分类,其精度高于传统的分类方法,受到广泛关注,并被应用于文档分类、蛋白质结构预测、图像处理和社会网络分析等众多领域.提出一种结合特征选择和链接过滤的主动协作分类方法,算法首先基于最小冗余-最大相关方法选择重要的属性,并建立隐式链接;之后过滤初始链接得到显式链接,最后集成隐式和显式链接形成新的网络结构,再应用协作分类方法实现分类.在3个公共数据集上将该方法分别与典型的传统分类方法、协作分类方法进行对比,结果表明该方法能获得较高的分类精度,对稀疏标记的网络其优势更加明显. 展开更多
关键词 协作分类 特征选择 链接过滤 主动学习 网络数据
在线阅读 下载PDF
一种用于鉴别体域网动作模式的近邻快速鲁棒协作表示分类算法
2
作者 吴建宁 凌雲 +1 位作者 王佳境 林英杰 《中国生物医学工程学报》 CAS CSCD 北大核心 2018年第5期545-552,共8页
提出一种近邻快速鲁棒协作表示体域网动作模式分类算法,旨在基于体域网多传感动作模式数据结构内在相似性,利用最近邻原则,寻找与测试动作样本密切相关的少量近邻类别和近邻训练样本,重新构造训练样本集,然后基于新训练样本集构建快速... 提出一种近邻快速鲁棒协作表示体域网动作模式分类算法,旨在基于体域网多传感动作模式数据结构内在相似性,利用最近邻原则,寻找与测试动作样本密切相关的少量近邻类别和近邻训练样本,重新构造训练样本集,然后基于新训练样本集构建快速鲁棒协作表示动作分类模型,通过扩展拉格朗日乘数算法求解待定测试样本协作表示系数和表示残差,定义判定测试样本所属类别规则,有效提高分类性能。采用公开的美国加州伯克利大学多传感动作模式数据库验证所提算法有效性。结果表明,所提算法能够从体域网多传感数据中获得更多与动作模式密切相关的协调性和相关性,动作模式识别率提高2%,运行时间仅需6.5 s,分类性能明显优于稀疏表示动作模式分类性能,有望为临床鉴别人体动作模式提供一个新的技术解决方案。 展开更多
关键词 协作表示分类 体域网 动作模式分类 最近邻
在线阅读 下载PDF
基于改进分数阶SVD的块协作表示的小样本人脸识别算法 被引量:4
3
作者 张建明 廖婷婷 +1 位作者 吴宏林 刘宇凯 《计算机工程与科学》 CSCD 北大核心 2018年第7期1237-1243,共7页
随着训练样本数目减少,传统人脸识别方法的性能会急剧下降,因此提出了改进的分数阶SVD(IFSVDR)的块协作表示算法,以提高小样本下人脸识别率。为了减少噪声对分类的干扰,对SVD算法进行改进,利用分数阶增大主要正交基权值,提高特征的判别... 随着训练样本数目减少,传统人脸识别方法的性能会急剧下降,因此提出了改进的分数阶SVD(IFSVDR)的块协作表示算法,以提高小样本下人脸识别率。为了减少噪声对分类的干扰,对SVD算法进行改进,利用分数阶增大主要正交基权值,提高特征的判别力;对相对较小权值进行抑制,降低噪声的干扰。然后,将得到的特征图像用基于块的协作表示算法进行分类(PCRC)。相对传统稀疏分类算法,PCRC融合了集成学习,能更好地解决小样本问题,且CRC计算复杂度低于SRC。在扩展的Yale B和AR人脸数据库上的实验表明,本文提出的算法在单样本的情况下也有较高的识别率。 展开更多
关键词 人脸识别 改进的分数阶奇异值分解 基于块的协作表示分类 小样本问题
在线阅读 下载PDF
基于镜像图的LRC和CRC偏差结合的人脸识别 被引量:2
4
作者 陈铭 周先春 周杰 《南京信息工程大学学报(自然科学版)》 CAS 2019年第3期340-345,共6页
为了提高人脸识别率及更好地显示人脸特征,本文提出了一种基于镜像图的LRC和CRC偏差结合的人脸识别方法.该方法首先生成一种镜像人脸,再通过融合原始人脸和镜像人脸形成新的混合训练样本,最后利用LRC和CRC偏差结合进行人脸识别.新方法... 为了提高人脸识别率及更好地显示人脸特征,本文提出了一种基于镜像图的LRC和CRC偏差结合的人脸识别方法.该方法首先生成一种镜像人脸,再通过融合原始人脸和镜像人脸形成新的混合训练样本,最后利用LRC和CRC偏差结合进行人脸识别.新方法增加了训练样本的数目,克服了由于光照和姿态等外部因素带来的影响.实验结果表明,镜像图与LRC和CRC偏差结合的人脸识别方法提高了人脸识别的准确性. 展开更多
关键词 人脸识别 镜像 协作表示分类算法 线性回归分类算法 偏差 稀疏表示
在线阅读 下载PDF
跨卷积网络特征融合的SAR图像目标识别 被引量:5
5
作者 冯新扬 邵超 《系统仿真学报》 CAS CSCD 北大核心 2021年第3期554-561,共8页
卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别领域得到广泛应用。在Le Net-5神经网络模型的基础上,提出了跨卷积网络特征融合的SAR图像识别方法。利用MNIST手写数据对LeNe... 卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别领域得到广泛应用。在Le Net-5神经网络模型的基础上,提出了跨卷积网络特征融合的SAR图像识别方法。利用MNIST手写数据对LeNet-5网络参数进行初始化,提取SAR图像的深层特征和浅层特征,对浅层特征进行主成分分析以得到关键类别信息,将深层特征和浅层特征进行融合,使用协作表示分类(Collaborative Representation Classification, CRC)将融合的两部分进行识别。通过公开数据集的实验验证表明,在不扩充训练样本条件下,该方法可达到98%的平均识别率。 展开更多
关键词 合成孔径雷达 Le Net-5神经网络 协作表示分类 深层特征
在线阅读 下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
6
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部