自动驾驶智能汽车逐渐普及,其在通过城市路面的沟渠、井盖和减速带等特殊路面时,制动与减速时的稳定性与乘坐舒适性较差,为改善这一状况,对悬架的设计提出了更高的要求。为了提高自动驾驶智能汽车制动与减速时的稳定性,通过融合比例积...自动驾驶智能汽车逐渐普及,其在通过城市路面的沟渠、井盖和减速带等特殊路面时,制动与减速时的稳定性与乘坐舒适性较差,为改善这一状况,对悬架的设计提出了更高的要求。为了提高自动驾驶智能汽车制动与减速时的稳定性,通过融合比例积分微分(Proportional Integral Derivative,PID)与模糊算法,设计了针对这些特殊路面的主动悬架模糊PID控制器,在Matlab/Simulink软件中搭建了半车主动悬架仿真模型,通过惯性测量单元(Inertial Measurement Unit,IMU)实车测量了沟渠路面的路面激励信息,并完成仿真试验。结果表明,当自动驾驶智能汽车在C级路面和沟渠路面行驶时,设计的主动悬架模糊PID控制器较单一算法的控制器更有效地降低了车身垂向加速度、车身俯仰角加速度、车轮动载荷和悬架动行程,改善了悬架性能。展开更多
A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
文摘自动驾驶智能汽车逐渐普及,其在通过城市路面的沟渠、井盖和减速带等特殊路面时,制动与减速时的稳定性与乘坐舒适性较差,为改善这一状况,对悬架的设计提出了更高的要求。为了提高自动驾驶智能汽车制动与减速时的稳定性,通过融合比例积分微分(Proportional Integral Derivative,PID)与模糊算法,设计了针对这些特殊路面的主动悬架模糊PID控制器,在Matlab/Simulink软件中搭建了半车主动悬架仿真模型,通过惯性测量单元(Inertial Measurement Unit,IMU)实车测量了沟渠路面的路面激励信息,并完成仿真试验。结果表明,当自动驾驶智能汽车在C级路面和沟渠路面行驶时,设计的主动悬架模糊PID控制器较单一算法的控制器更有效地降低了车身垂向加速度、车身俯仰角加速度、车轮动载荷和悬架动行程,改善了悬架性能。
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.