期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进AP聚类与优化GRNN的非侵入式负荷分解研究
被引量:
10
1
作者
汪繁荣
向堃
刘辉
《工程科学与技术》
EI
CAS
CSCD
北大核心
2020年第4期56-65,共10页
泛在电力物联网的提出推动了智慧用电、负荷监测等技术的大力发展,为解决传统非侵入式负荷监测与分解方法耗时长、辨识精度低等问题,提出了一种通过半监督学习聚类数据建立特征集并结合果蝇优化广义回归神经网络模型的负荷分解方法。首...
泛在电力物联网的提出推动了智慧用电、负荷监测等技术的大力发展,为解决传统非侵入式负荷监测与分解方法耗时长、辨识精度低等问题,提出了一种通过半监督学习聚类数据建立特征集并结合果蝇优化广义回归神经网络模型的负荷分解方法。首先,该方法利用输入的设备有功功率和电流数据采取半监督学习优化相似矩阵,以近邻传播聚类算法为基础挖掘出用电设备的运行状态特性及功率信息,再使用数字编码方式将设备运行状态表示为分类标签;然后,输入总有功功率、无功功率以及电流的时间序列数据和对应序列的分类标签矩阵,利用果蝇优化算法的寻优能力求得广义回归神经网络模型的最优Spread值完成模型优化和训练;随后,输入测试时间序列数据,得到分类矩阵即各设备运行状态,并利用设备运行状态对应的功率信息进行总有功功率重构拟合,完成负荷分解。经仿真对比,该方法对所有用电设备运行状态辨识准确率达到86%左右,对单个用电设备运行状态辨识准确率达到96%左右,且耗时较短,显著提高了对负荷特性信息的挖掘能力和分解辨识能力。
展开更多
关键词
非侵入式负荷分解与监测
半监督近邻传播聚类
果蝇优化算法
广义回归神经网络
在线阅读
下载PDF
职称材料
题名
基于改进AP聚类与优化GRNN的非侵入式负荷分解研究
被引量:
10
1
作者
汪繁荣
向堃
刘辉
机构
湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室
无锡风繁伟业科技有限公司
出处
《工程科学与技术》
EI
CAS
CSCD
北大核心
2020年第4期56-65,共10页
基金
国家自然科学基金项目(41601394)。
文摘
泛在电力物联网的提出推动了智慧用电、负荷监测等技术的大力发展,为解决传统非侵入式负荷监测与分解方法耗时长、辨识精度低等问题,提出了一种通过半监督学习聚类数据建立特征集并结合果蝇优化广义回归神经网络模型的负荷分解方法。首先,该方法利用输入的设备有功功率和电流数据采取半监督学习优化相似矩阵,以近邻传播聚类算法为基础挖掘出用电设备的运行状态特性及功率信息,再使用数字编码方式将设备运行状态表示为分类标签;然后,输入总有功功率、无功功率以及电流的时间序列数据和对应序列的分类标签矩阵,利用果蝇优化算法的寻优能力求得广义回归神经网络模型的最优Spread值完成模型优化和训练;随后,输入测试时间序列数据,得到分类矩阵即各设备运行状态,并利用设备运行状态对应的功率信息进行总有功功率重构拟合,完成负荷分解。经仿真对比,该方法对所有用电设备运行状态辨识准确率达到86%左右,对单个用电设备运行状态辨识准确率达到96%左右,且耗时较短,显著提高了对负荷特性信息的挖掘能力和分解辨识能力。
关键词
非侵入式负荷分解与监测
半监督近邻传播聚类
果蝇优化算法
广义回归神经网络
Keywords
non-intrusive load decomposition and monitoring
semi-supervised affinity propagation clustering
fruit fly optimization algorithm
generalized regression neural network
分类号
TM714 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进AP聚类与优化GRNN的非侵入式负荷分解研究
汪繁荣
向堃
刘辉
《工程科学与技术》
EI
CAS
CSCD
北大核心
2020
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部