期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
类级代码异味的半监督学习检测方法
1
作者 瞿志豪 陈军华 高建华 《计算机工程与设计》 北大核心 2025年第10期2741-2747,共7页
基于机器学习的代码异味检测面临数据集较小、缺乏系统性以及手动注释耗时等挑战,限制了模型性能的提升。为此分析了一种代码异味的半监督学习检测方法,旨在通过结合未标注数据和有限标注数据来提高监督学习分类器的性能。实验结果表明... 基于机器学习的代码异味检测面临数据集较小、缺乏系统性以及手动注释耗时等挑战,限制了模型性能的提升。为此分析了一种代码异味的半监督学习检测方法,旨在通过结合未标注数据和有限标注数据来提高监督学习分类器的性能。实验结果表明,半监督学习分类器(semi supervised learning classifier)的性能明显优于监督学习分类器,在Data Class和Feature Envy两种代码异味检测中,F-measure分别提高了3%的和10%。 展开更多
关键词 代码异味 机器学习 监督学习 监督学习 半监督学习分类器 Feature Envy Data Class
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部