期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
类级代码异味的半监督学习检测方法
1
作者
瞿志豪
陈军华
高建华
《计算机工程与设计》
北大核心
2025年第10期2741-2747,共7页
基于机器学习的代码异味检测面临数据集较小、缺乏系统性以及手动注释耗时等挑战,限制了模型性能的提升。为此分析了一种代码异味的半监督学习检测方法,旨在通过结合未标注数据和有限标注数据来提高监督学习分类器的性能。实验结果表明...
基于机器学习的代码异味检测面临数据集较小、缺乏系统性以及手动注释耗时等挑战,限制了模型性能的提升。为此分析了一种代码异味的半监督学习检测方法,旨在通过结合未标注数据和有限标注数据来提高监督学习分类器的性能。实验结果表明,半监督学习分类器(semi supervised learning classifier)的性能明显优于监督学习分类器,在Data Class和Feature Envy两种代码异味检测中,F-measure分别提高了3%的和10%。
展开更多
关键词
代码异味
机器
学习
监督
学习
半
监督
学习
半监督学习分类器
Feature
Envy
Data
Class
在线阅读
下载PDF
职称材料
题名
类级代码异味的半监督学习检测方法
1
作者
瞿志豪
陈军华
高建华
机构
上海师范大学信息与机电工程学院
出处
《计算机工程与设计》
北大核心
2025年第10期2741-2747,共7页
基金
国家自然科学基金项目(61672355)。
文摘
基于机器学习的代码异味检测面临数据集较小、缺乏系统性以及手动注释耗时等挑战,限制了模型性能的提升。为此分析了一种代码异味的半监督学习检测方法,旨在通过结合未标注数据和有限标注数据来提高监督学习分类器的性能。实验结果表明,半监督学习分类器(semi supervised learning classifier)的性能明显优于监督学习分类器,在Data Class和Feature Envy两种代码异味检测中,F-measure分别提高了3%的和10%。
关键词
代码异味
机器
学习
监督
学习
半
监督
学习
半监督学习分类器
Feature
Envy
Data
Class
Keywords
code smell
machine learning
supervised learning
semi supervise learning
semi-supervised learning classifier
Feature Envy
Data Class
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
类级代码异味的半监督学习检测方法
瞿志豪
陈军华
高建华
《计算机工程与设计》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部