期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于半监督VAE和CGAN的运动想象脑电信号分类器
1
作者 袁凯烽 侯璐 黄永锋 《传感器与微系统》 北大核心 2025年第2期82-86,共5页
由于脑电(EEG)信号的特异性、隐私性,数据集相对匮乏,运动想象EEG(MI-EEG)信号分类是一项具有挑战性的任务。提出了一种基于半监督变分自编码器-条件生成对抗网络(SSVAE-CGAN)模型应用于MI-EEG信号的增强和分类。SSVAE-CGAN模型的SSVAE-... 由于脑电(EEG)信号的特异性、隐私性,数据集相对匮乏,运动想象EEG(MI-EEG)信号分类是一项具有挑战性的任务。提出了一种基于半监督变分自编码器-条件生成对抗网络(SSVAE-CGAN)模型应用于MI-EEG信号的增强和分类。SSVAE-CGAN模型的SSVAE-CGAN的编码器为EEGNet网络,获得MI-EEG信号的时域、频域和空间域的复合特征的潜在空间表示。不同于传统的无监督变分自编码器,在训练编码器时,SSVAE-CGAN使用MI-EEG信号的标签信息以监督的方式更好地构建潜在空间。然后,SSVAE-CGAN使用条件生成对抗网络接收带有标签信息的随机噪声进行生成器-判别器的对抗训练,并生成与潜在空间分布对齐的隐空间。在真实MI-EEG数据集进行了数据增强和分类实验,实验结果验证了本文模型的有效性。 展开更多
关键词 运动想象脑电 数据增强 半监督变分自编码器 条件生成对抗网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部